
SECTION 3
CENTRAL PROCESSING UNIT

The PowerPC-based RISC processor (RCPU) used in the MPC500 family of micro-
controllers integrates five independent execution units: an integer unit (IU), a load/
store unit (LSU), and a branch processing unit (BPU), floating-point unit (FPU) and
integer multiplier divider (IMD). The use of simple instructions with rapid execution
times yields high efficiency and throughput for MPC555-based systems.

Most integer instructions execute in one clock cycle. Instructions can complete out of
order for increased performance; however, the processor makes execution appear
sequential.

This section provides an overview of the RCPU. For a detailed description of this pro-
cessor, refer to the RCPU Reference Manual (RCPURM/AD).

3.1 RCPU Features

Major features of the RCPU include the following:

• High-performance microprocessor
— Single clock-cycle execution for many instructions

• Five independent execution units and two register files
— Independent LSU for load and store operations
— BPU featuring static branch prediction
— A 32-bit IU
— Fully IEEE 754-compliant FPU for both single- and double-precision opera-

tions
— Thirty-two general-purpose registers (GPRs) for integer operands
— Thirty-two floating-point registers (FPRs) for single- or double-precision oper-

ands
• Facilities for enhanced system performance

— Programmable big- and little-endian byte ordering
— Atomic memory references

• In-system testability and debugging features
• High instruction and data throughput

— Condition register (CR) look-ahead operations performed by BPU
— Branch-folding capability during execution (zero-cycle branch execution time)
— Programmable static branch prediction on unresolved conditional branches
— A pre-fetch queue that can hold up to four instructions, providing look-ahead

capability
— Interlocked pipelines with feed-forwarding that control data dependencies in

hardware
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-1

3.2 RCPU Block Diagram

Figure 3-1 provides a block diagram of the RCPU.

Figure 3-1 RCPU Block Diagram

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��WRITE BACK BUS S

O
U

R
C

E
 B

U
S

E
SC

O
N

T
R

O
L

B
U

S

B
R

A
N

C
H

I-ADDR

I-DATA

L-ADDR

L-DATA

F
P

R
(3

2
X

 6
4)

LO
A

D
/S

T
O

R
E

F
LO

A
T

IN
G

D
A

T
A

F
P

R

H
IS

T
O

R
Y

LO
A

D
/S

T
O

R
E

IN
T

E
G

E
R

 D
A

T
A

LO
A

D
/S

T
O

R
E

A
D

D
R

E
S

S

IM
U

L/

ID
IV

A
LU

/
G

P
R

H
IS

T
O

R
Y

G
P

R
(3

2
X

 3
2)

C
O

N
T

R
O

L

R
E

G
S

(4
 S

LO
T

S
/C

LO
C

K
)

IN
S

T
R

U
C

T
IO

N
P

R
E

-F
E

T
C

H
P

R
O

C
E

S
S

O
R

N
E

X
T

 A
D

D
R

E
S

S

G
E

N
E

R
A

T
IO

N

IN
S

T
R

U
C

T
IO

N
 S

E
Q

U
E

N
C

E
R

F
P

U

R
C

P
U

�� ��

B
F

U

2 SLOTS/CLOCK

Q
U

E
U

E
U

N
IT
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-2

3.3 Instruction Sequencer

The instruction sequencer provides centralized control over data flow between execu-
tion units and register files. The sequencer implements the basic instruction pipeline,
fetches instructions from the memory system, issues them to available execution
units, and maintains a state history so it can back the machine up in the event of an
exception.

The instruction sequencer fetches instructions from the burst buffer controller into the
instruction pre-fetch queue. The BPU extracts branch instructions from the pre-fetch
queue and uses static branch prediction on unresolved conditional branches to allow
the instruction unit to fetch instructions from a predicted target instruction stream while
a conditional branch is evaluated. The BPU folds out branch instructions for uncondi-
tional branches or conditional branches unaffected by instructions in the execution
stage.

Instructions issued beyond a predicted branch do not complete execution until the
branch is resolved, preserving the programming model of sequential execution. If
branch prediction is incorrect, the instruction unit flushes all predicted path instruc-
tions, and instructions are issued from the correct path.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-3

Figure 3-2 Sequencer Data Path

3.4 Independent Execution Units

The PowerPC architecture supports independent floating-point, integer, load/store,
and branch processing execution units, making it possible to implement advanced fea-
tures such as look-ahead operations. For example, since branch instructions do not
depend on GPRs, branches can often be resolved early, eliminating stalls caused by
taken branches.

Table 3-1 summarizes the RCPU execution units.

INSTRUCTION ADDRESS GENERATOR

CC UNIT

32

32
R

E
A

D
 W

R
IT

E
 B

U
S

E
S

BRANCH

INSTRUCTION BUFFER

32

INSTRUCTION MEMORY SYSTEM

EXECUTION UNITS AND REGISTERS FILES

CONDITION
EVALUATION

INSTRUCTION
PRE-FETCH

QUEUE
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-4

The following sections describe the execution units in greater detail.

3.4.1 Branch Processing Unit (BPU)

The BPU, located within the instruction sequencer, performs condition register look-
ahead operations on conditional branches. The BPU looks through the instruction
queue for a conditional branch instruction and attempts to resolve it early, achieving
the effect of a zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered,
the processor pre-fetches instructions from the predicted target stream until the con-
ditional branch is resolved.

The BPU contains an calculation feature to compute branch target addresses and
three special-purpose, user-accessible registers: the link register (LR), the count reg-
ister (CTR), and the condition register (CR). The BPU calculates the return pointer for
subroutine calls and saves it into the LR. The LR also contains the branch target
address for the branch conditional to link register (bclrx) instruction. The CTR contains
the branch target address for the branch conditional to count register (bcctrx) instruc-
tion. The contents of the LR and CTR can be copied to or from any GPR. Because the
BPU uses dedicated registers rather than general-purpose or floating-point registers,
execution of branch instructions is independent from execution of integer instructions.

3.4.2 Integer Unit (IU)

The IU executes all integer processor instructions, except the integer storage access
instructions, which are implemented by the load/store unit. The IU contains the follow-
ing subunits:

• The IMUL–IDIV unit includes the implementation of the integer multiply and divide
instructions.

• The ALU–BFU unit includes the implementation of all integer logic, add and sub-
tract, and bit field instructions.

Table 3-1 RCPU Execution Units

Unit Description

Branch processing
unit (BPU)

Includes the implementation of all branch instructions

Load/store unit (LSU)
Includes implementation of all load and store instructions, whether defined as part
of the integer processor or the floating-point processor

Integer unit (IU)

Includes implementation of all integer instructions except load/store instructions.
This module includes the GPRs (including GPR history and scoreboard) and the
following subunits:

The IMUL-IDIV includes the implementation of the integer multiply and divide in-
structions.

The ALU-BFU includes implementation of all integer logic, add and subtract in-
structions, and bit field instructions.

Floating-point unit
(FPU)

Includes the FPRs (including FPR history and scoreboard) and the implementa-
tion of all floating-point instructions except load and store floating-point instruc-
tions
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-5

The IU also includes the integer exception register (XER) and the general-purpose
register file.

IMUL–IDIV and ALU–BFU are implemented as separate execution units. The ALU–
BFU unit can execute one instruction per clock cycle. IMUL–IDIV instructions require
multiple clock cycles to execute. IMUL–IDIV is pipelined for multiply instructions, so
that consecutive multiply instructions can be issued on consecutive clock cycles.
Divide instructions are not pipelined; an integer divide instruction preceded or followed
by an integer divide or multiply instruction results in a stall in the processor pipeline.
Note that since IMUL–IDIV and ALU–BFU are implemented as separate execution
units, an integer divide instruction preceded or followed by an ALU–BFU instruction
does not cause a delay in the pipeline.

3.4.3 Load/Store Unit (LSU)

The load/store unit handles all data transfer between the general-purpose register file
and the internal load/store bus (L-bus). The load/store unit is implemented as an inde-
pendent execution unit so that stalls in the memory pipeline do not cause the master
instruction pipeline to stall (unless there is a data dependency). The unit is fully pipe-
lined so that memory instructions of any size may be issued on back-to-back cycles.

There is a 32-bit wide data path between the load/store unit and the general-purpose
register file. Single-word accesses can be achieved with an internal on-chip data RAM,
resulting in two clocks latency. Double-word accesses require two clocks, resulting in
three clocks latency. Since the L-bus is 32 bits wide, double-word transfers require two
bus accesses. The load/store unit performs zero-fill for byte and half-word transfers
and sign extension for half-word transfers.

Addresses are formed by adding the source one register operand specified by the
instruction (or zero) to either a source two register operand or to a 16-bit, immediate
value embedded in the instruction.

3.4.4 Floating-Point Unit (FPU)

The FPU contains a double-precision multiply array, the floating-point status and con-
trol register (FPSCR), and the FPRs. The multiply-add array allows the MPC555 to
efficiently implement floating-point operations such as multiply, multiply-add, and
divide.

The MPC555 depends on a software envelope to fully implement the IEEE floating-
point specification. Overflows, underflows, NaNs, and denormalized numbers cause
floating-point assist exceptions that invoke a software routine to deliver (with hardware
assistance) the correct IEEE result.

To accelerate time-critical operations and make them more deterministic, the MPC555
provides a mode of operation that avoids invoking the software envelope and attempts
to deliver results in hardware that are adequate for most applications, if not in strict
conformance with IEEE standards. In this mode, denormalized numbers, NaNs, and
IEEE invalid operations are treated as legitimate, returning default results rather than
causing floating-point assist exceptions.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-6

3.5 Levels of the PowerPC Architecture

The PowerPC architecture consists of three layers. Adherence to the PowerPC archi-
tecture can be measured in terms of which of the following levels of the architecture
are implemented:

• PowerPC user instruction set architecture (UISA) — Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

• PowerPC virtual environment architecture (VEA) — Describes the memory model
for a multiprocessor environment, and describes other aspects of virtual environ-
ments. Implementations that conform to the VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA) — Defines the memory man-
agement model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

3.6 RCPU Programming Model

The PowerPC architecture defines register-to-register operations for most computa-
tional instructions. Source operands for these instructions are accessed from the
registers or are provided as immediate values embedded in the instruction opcode.
The three-register instruction format allows specification of a target register distinct
from the two source operands. Load and store instructions transfer data between
memory and on-chip registers.

PowerPC processors have two levels of privilege: supervisor mode of operation (typi-
cally used by the operating environment) and user mode of operation (used by the
application software). The programming models incorporate 32 GPRs, special-pur-
pose registers (SPRs), and several miscellaneous registers.

Supervisor-level access is provided through the processor’s exception mechanism.
That is, when an exception is taken (either due to an error or problem that needs to be
serviced, or deliberately through the use of a trap instruction), the processor begins
operating in supervisor mode. The level of access is indicated by the privilege-level
(PR) bit in the machine state register (MSR).

Figure 3-3 shows the user-level and supervisor-level RCPU programming models and
also illustrates the three levels of the PowerPC architecture. The numbers to the left
of the SPRs indicate the decimal number that is used in the syntax of the instruction
operands to access the register.

Note that registers such as the general-purpose registers (GPRs) are accessed
through operands that are part of the instructions. Access to registers can be explicit
(that is, through the use of specific instructions for that purpose such as move to spe-
cial-purpose register (mtspr) and move from special-purpose register (mfspr)
instructions) or implicitly as the part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-7

Figure 3-3 RCPU Programming Model

Table 3-2 lists the MPC555 supervisor-level registers.

MSR

Supervisor-Level SPRs

USER MODEL VEA

SUPERVISOR MODEL OEA

Machine State Register

Development Support SPRs

Condition
Register

Floating-Point Status
and Control Register

FPSCR

CR

0 31

0 31

0 31

GPR0

GPR1

GPR31

User-Level SPRs

Integer Exception Register (XER)

Link Register (LR)

Count Register (CTR)

0 31

0 63

0 31

Time Base Lower – Read (TBL)

Time Base Upper – Read (TBU)

Time Base Facility (for Reading)

USER MODEL UISA

FPR0

FPR1

FPR31

See Table 3-2 for list of
supervisor-level SPRs.

See Table 3-3 for list of
development-support SPRs.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-8

Table 3-2 Supervisor-Level SPRs

SPR Number
(Decimal) Special-Purpose Register

18
DAE/Source Instruction Service Register (DSISR)
See 3.9.2 DAE/Source Instruction Service Register
(DSISR) for bit descriptions.

19
Data Address Register (DAR)
See 3.9.3 Data Address Register (DAR) for bit descrip-
tions.

22
Decrementer Register (DEC)
See 3.9.5 Decrementer Register (DEC) for bit descrip-
tions.

26
Save and Restore Register 0 (SRR0)
See 3.9.6 Machine Status Save/Restore Register 0
(SRR0) for bit descriptions.

27
Save and Restore Register 1 (SRR1)
See 3.9.7 Machine Status Save/Restore Register 1
(SRR1) for bit descriptions.

80
External Interrupt Enable (EIE)1

See 3.9.10.1 EIE, EID, and NRI Special-Purpose Reg-
isters for bit descriptions.

81
External Interrupt Disable (EID)1

See 3.9.10.1 EIE, EID, and NRI Special-Purpose Reg-
isters for bit descriptions.

82
Non-Recoverable Interrupt (NRI)1

See 3.9.10.1 EIE, EID, and NRI Special-Purpose Reg-
isters for bit descriptions.

272
SPR General 0 (SPRG0)
See 3.9.8 General SPRs (SPRG0–SPRG3) for bit de-
scriptions.

273
SPRGeneral 1 (SPRG1)
See 3.9.8 General SPRs (SPRG0–SPRG3) for bit de-
scriptions.

274
SPR General 2 (SPRG2)
See 3.9.8 General SPRs (SPRG0–SPRG3) for bit de-
scriptions.

275
SPR General 3 (SPRG3)
See 3.9.8 General SPRs (SPRG0–SPRG3) for bit de-
scriptions.

284
Time Base Lower – Write (TBL)
See Table 3-14 for bit descriptions.

285
Time Base Upper – Write (TBU)
See Table 3-14 for bit descriptions.

287
Processor Version Register (PVR)
See Table 3-16 for bit descriptions.

528 IMPU Global Region Attribute (MI_GRA)1

See Table 4-7 for bit descriptions.

536
L2U Global Region Attribute (L2U_GRA)1
See Table 11-10 for bit descriptions.

560
BBC Module Configuration Register (BBCMCR)1
See Table 4-8 for bit descriptions.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-9

Table 3-3 lists the MPC555 SPRs used for development support.

568 L2U Module Configuration Register (L2U_MCR)1

See Table 11-7 for bit descriptions.

784
IMPU Region Base Address 0 (MI_RBA0)1
See Table 4-5 for bit descriptions.

785
IMPU Region Base Address 1 (MI_RBA1)1
See Table 4-5 for bit descriptions.

786
IMPU Region Base Address 2 (MI_RBA2)1
See Table 4-5 for bit descriptions.

787 IMPU Region Base Address 3 (MI_RBA3)1

See Table 4-5 for bit descriptions.

792
L2U Region Base Address Register 0 (L2U_RBA0)1
See Table 11-8 for bit descriptions.

793
L2U Region Base Address Register 1 (L2U_RBA1)1
See Table 11-8 for bit descriptions.

794
L2U Region Base Address Register 2 (L2U_RBA2)1
See Table 11-8 for bit descriptions.

795
L2U Region Base Address Register 3 (L2U_RBA3)1
See Table 11-8 for bit descriptions.

816
IMPU Region Attribute Register 0 (MI_RA0)1
See Table 4-6 for bit descriptions.

817
IMPU Region Attribute Register 1 (MI_RA1)1
See Table 4-6 for bit descriptions.

818
IMPU Region Attribute Register 2 (MI_RA2)1
See Table 4-6 for bit descriptions.

819
IMPU Region Attribute Register 3 (MI_RA3)1
See Table 4-6 for bit descriptions.

824
L2U Region Attribute Register 0 (L2U_RA0)1
See Table 11-9 for bit descriptions.

825
L2U Region Attribute Register 1 (L2U_RA1)1
See Table 11-9 for bit descriptions.

826
L2U Region Attribute Register 2 (L2U_RA2)1
See Table 11-9 for bit descriptions.

827
L2U Region Attribute Register 3 (L2U_RA3)1
See Table 11-9 for bit descriptions.

1022
Floating-Point Exception Cause Register (FPECR)1
See 3.9.10.2 Floating-Point Exception Cause Register
(FPECR) for bit descriptions.

NOTES:
1. Implementation-specific SPR.

Table 3-2 Supervisor-Level SPRs (Continued)

SPR Number
(Decimal) Special-Purpose Register
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-10

Where not otherwise noted, reserved fields in registers are ignored when written and
return zero when read. An exception to this rule is XER[16:23]. These bits are set to
the value written to them and return that value when read.

3.7 PowerPC UISA Register Set

The PowerPC UISA registers can be accessed by either user- or supervisor-level
instructions. The general-purpose registers are accessed through instruction
operands.

Table 3-3 Development Support SPRs1

NOTES:
1. All development-support SPRs are implementation-specific.

SPR Number
(Decimal) Special-Purpose Register

144
Comparator A Value Register (CMPA)
See Table 21-17 for bit descriptions.

145
Comparator B Value Register (CMPB)
See Table 21-17 for bit descriptions.

146
Comparator C Value Register (CMPC)
See Table 21-17 for bit descriptions.

147
Comparator D Value Register (CMPD)
See Table 21-17 for bit descriptions.

148
Exception Cause Register (ECR)
See Table 21-26 for bit descriptions.

149
Debug Enable Register (DER)
See Table 21-27 for bit descriptions.

150
Breakpoint Counter A Value and Control (COUNTA)
See Table 21-24 for bit descriptions.

151
Breakpoint Counter B Value and Control (COUNTB)
See Table 21-25 for bit descriptions.

152
Comparator E Value Register (CMPE)
See Table 21-18 for bit descriptions.

153
Comparator F Value Register (CMPF)
See Table 21-18 for bit descriptions.

154
Comparator G Value Register (CMPG)
See Table 21-20 for bit descriptions.

155
Comparator H Value Register (CMPH)
See Table 21-20 for bit descriptions.

156
L-bus Support Comparators Control 1 (LCTRL1)
See Table 21-22 for bit descriptions.

157
L-bus Support Comparators Control 2 (LCTRL2)
See Table 21-23 for bit descriptions.

158
I-bus Support Control Register (ICTRL)
See Table 21-21 for bit descriptions.

159
Breakpoint Address Register (BAR)
See Table 21-19 for bit descriptions.

630
Development Port Data Register (DPDR)
See 21.7.13 for bit descriptions.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-11

3.7.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the integer unit’s thirty-two 32-bit GPRs, shown below.
These registers are accessed as source and destination registers through operands
in the instruction syntax.

3.7.2 Floating-Point Registers (FPRs)

The PowerPC architecture provides thirty-two 64-bit FPRs. These registers are
accessed as source and destination registers through operands in floating-point
instructions. Each FPR supports the double-precision, floating-point format. Every
instruction that interprets the contents of an FPR as a floating-point value uses the
double-precision floating-point format for this interpretation. That is, all floating-point
numbers are stored in double-precision format.

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of the compare instructions (which update the CR), place the result into an
FPR. Information about the status of floating-point operations is placed into the float-
ing-point status and control register (FPSCR) and in some cases, into the CR, after the
completion of the operation’s writeback stage. For information on how the CR is
affected by floating-point operations, see 3.7.4 Condition Register (CR).

3.7.3 Floating-Point Status and Control Register (FPSCR)

The FPSCR controls the handling of floating-point exceptions and records status
resulting from the floating-point operations. FPSCR[0:23] are status bits.
FPSCR[24:31] are control bits.

GPRs — General-Purpose Registers

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

GPR0

GPR1

. . .

. . .

GPR31

RESET: UNCHANGED

FPRs— Floating-Point Registers

MSB
0

LSB
63

FPR0

FPR1

. . .

. . .

FPR31

RESET: UNCHANGED
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-12

FPSCR[0:12] and FPSCR[21:23] are floating-point exception condition bits. These bits
are sticky, except for the floating-point enabled exception summary (FEX) and float-
ing-point invalid operation exception summary (VX). Once set, sticky bits remain set
until they are cleared by an mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction.

Table 3-4 summarizes which bits in the FPSCR are sticky status bits, which are nor-
mal status bits, and which are control bits.

FEX and VX are the logical ORs of other FPSCR bits. Therefore these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

A listing of FPSCR bit settings is shown in Table 3-5.

Table 3-4 FPSCR Bit Categories

Bits Type

[0], [3:12], [21:23] Status, sticky

[1:2], [13:20] Status, not sticky

[24:31] Control

FPSCR — Floating-Point Status and Control Register

MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FX FEX VX OX UX ZX XX VXS-
NAN VXISI VXIDI VXZD

Z VXIMZ VXVC FR FI FPRF
0

RESET: UNCHANGED

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

FPRF[1:4] 0 VX-
SOFT

VX-
SQRT VXCVI VE OE UE ZE XE NI RN

RESET: UNCHANGED
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-13

Table 3-5 FPSCR Bit Settings

Bit(s) Name Description

0 FX

Floating-point exception summary. Every floating-point instruction implicitly sets FPSCR[FX] if
that instruction causes any of the floating-point exception bits in the FPSCR to change from 0 to
1. The mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field containing FPSCR[FX]
is copied. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions can set or clear FPSCR[FX] explic-
itly. This is a sticky bit.

1 FEX

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled
exception conditions. It is the logical OR of all the floating-point exception bits masked with their
respective enable bits. The mcrfs instruction implicitly clears FPSCR[FEX] if the result of the log-
ical OR described above becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions
cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

2 VX

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid
operation exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs
instruction implicitly clears FPSCR[VX] if the result of the logical OR described above becomes
zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot set or clear FPSCR[VX] explic-
itly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit.

4 UX Floating-point underflow exception. This is a sticky bit.

5 ZX Floating-point zero divide exception. This is a sticky bit.

6 XX Floating-point inexact exception. This is a sticky bit.

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit.

8 VXISI Floating-point invalid operation exception for ×-×. This is a sticky bit.

9 VXIDI Floating-point invalid operation exception for ×/×. This is a sticky bit.

10 VXZDZ Floating-point invalid operation exception for 0/0. This is a sticky bit.

11 VXIMZ Floating-point invalid operation exception for ×*0. This is a sticky bit.

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit.

13 FR
Floating-point fraction rounded. The last floating-point instruction that potentially rounded the
intermediate result incremented the fraction. This bit is not sticky.

14 FI
Floating-point fraction inexact. The last floating-point instruction that potentially rounded the
intermediate result produced an inexact fraction or a disabled exponent overflow. This bit is not
sticky.

[15:19] FPRF

Floating-point result flags. This field is based on the value placed into the target register even if
that value is undefined. Refer to Table 3-6 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the

compare instructions may set this bit with the FPCC bits, to indicate the class of the
result.

16–19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the class
of the result. Note that in this case the high-order three bits of the FPCC retain their
relational significance indicating that the value is less than, greater than, or equal to
zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)

20 — Reserved
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-14

Table 3-6 illustrates the floating-point result flags that correspond to FPSCR[15:19].

3.7.4 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain opera-
tions and provides a mechanism for testing and branching. The bits in the CR are
grouped into eight 4-bit fields, CR0 to CR7.

21 VXSOFT

Floating-point invalid operation exception for software request. This bit can be altered only by the
mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. The purpose of VXSOFT is to allow soft-
ware to cause an invalid operation condition for a condition that is not necessarily associated with
the execution of a floating-point instruction. For example, it might be set by a program that com-
putes a square root if the source operand is negative. This is a sticky bit.

22 VXSQRT
Floating-point invalid operation exception for invalid square root. This is a sticky bit. This guar-
antees that software can simulate fsqrt and frsqrte, and to provide a consistent interface to
handle exceptions caused by square-root operations.

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit.

24 VE Floating-point invalid operation exception enable.

25 OE Floating-point overflow exception enable.

26 UE
Floating-point underflow exception enable. This bit should not be used to determine whether
denormalization should be performed on floating-point stores.

27 ZE Floating-point zero divide exception enable.

28 XE Floating-point inexact exception enable.

29 NI Non-IEEE mode bit.

30–31 RN

Floating-point rounding control.
00 Round to nearest
01 Round toward zero
10 Round toward +infinity
11 Round toward -infinity

Table 3-6 Floating-Point Result Flags in FPSCR

Result Flags
(Bits 15–19)

C<>=?
Result value class

10001 Quiet NaN

01001 – Infinity

01000 – Normalized number

11000 – Denormalized number

10010 – Zero

00010 + Zero

10100 + Denormalized number

00100 + Normalized number

00101 + Infinity

Table 3-5 FPSCR Bit Settings (Continued)

Bit(s) Name Description
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-15

The CR fields can be set in the following ways:

• Specified fields of the CR can be set by a move instruction (mtcrf) to the CR from
a GPR.

• Specified fields of the CR can be moved from one CRx field to another with the
mcrf instruction.

• A specified field of the CR can be set by a move instruction (mcrxr) to the CR
from the XER.

• Condition register logical instructions can be used to perform logical operations
on specified bits in the condition register.

• CR0 can be the implicit result of an integer operation.
• A specified CR field can be the explicit result of an integer compare instruction.

Instructions are provided to test individual CR bits.

3.7.4.1 Condition Register CR0 Field Definition

In most integer instructions, when the CR is set to reflect the result of the operation
(that is, when Rc = 1), and for addic., andi., and andis., the first three bits of CR0 are
set by an algebraic comparison of the result to zero; the fourth bit of CR0 is copied from
XER[SO]. For integer instructions, CR[0:3] are set to reflect the result as a signed
quantity. The result as an unsigned quantity or a bit string can be deduced from the
EQ bit.

The CR0 bits are interpreted as shown in Table 3-7. If any portion of the result (the 32-
bit value placed into the destination register) is undefined, the value placed in the first
three bits of CR0 is undefined.

3.7.4.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation
(that is, when Rc = 1), the CR1 field (bits 4 to 7 of the CR) is copied from FPSCR[0:3]
to indicate the floating-point exception status. For more information about the FPSCR,

CR — Condition Register

MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB

31

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

RESET: UNCHANGED

Table 3-7 Bit Settings for CR0 Field of CR

CR0
Bit Description

0 Negative (LT) — This bit is set when the result is negative.

1 Positive (GT) — This bit is set when the result is positive (and not zero).

2 Zero (EQ) — This bit is set when the result is zero.

3 Summary overflow (SO) — This is a copy of the final state of XER[SO] at the completion of the instruction.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-16

see 3.7.3 Floating-Point Status and Control Register (FPSCR). The bit settings for
the CR1 field are shown in Table 3-8.

3.7.4.3 Condition Register CRn Field — Compare Instruction

When a specified CR field is set by a compare instruction, the bits of the specified field
are interpreted as shown in Table 3-9. A condition register field can also be accessed
by the mfcr, mcrf, and mtcrf instructions.

3.7.5 Integer Exception Register (XER)

The integer exception register (XER) is a user-level, 32-bit register.

Table 3-8 Bit Settings for CR1 Field of CR

CR1 Bit Description

0
Floating-point exception (FX) — This is a copy of the final state of FPSCR[FX] at the completion of the in-
struction.

1
Floating-point enabled exception (FEX) — This is a copy of the final state of FPSCR[FEX] at the completion
of the instruction.

2
Floating-point invalid exception (VX) — This is a copy of the final state of FPSCR[VX] at the completion of
the instruction.

3
Floating-point overflow exception (OX) — This is a copy of the final state of FPSCR[OX] at the completion
of the instruction.

Table 3-9 CRn Field Bit Settings for Compare Instructions

CRn Bit1

NOTES:
1. Here, the bit indicates the bit number in any one of the four-bit subfields, CR0–CR7

Description

0

Less than, floating-point less than (LT, FL).

For integer compare instructions, (rA) < SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM, UIMM,
or (rB) (logical comparison).

For floating-point compare instructions, (frA) < (frB).

1

Greater than, floating-point greater than (GT, FG).

For integer compare instructions, (rA) > SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM, UIMM,
or (rB) (logical comparison).

For floating-point compare instructions, (frA) > (frB).

2

Equal, floating-point equal (EQ, FE).

For integer compare instructions, (rA) = SIMM, UIMM, or (rB).

For floating-point compare instructions, (frA) = (frB).

3

Summary overflow, floating-point unordered (SO, FU).

For integer compare instructions, this is a copy of the final state of XER[SO] at the completion of the in-
struction.

For floating-point compare instructions, one or both of (frA) and (frB) is not a number (NaN).
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-17

The bit definitions for XER, shown in Table 3-10, are based on the operation of an
instruction considered as a whole, not on intermediate results. For example, the result
of the Subtract from Carrying (subfcx) instruction is specified as the sum of three val-
ues. This instruction sets bits in the XER based on the entire operation, not on an
intermediate sum.

In most cases, reserved fields in registers are ignored when written to and return zero
when read. However, XER[16:23] are set to the value written to them and return that
value when read.

3.7.6 Link Register (LR)

The 32-bit link register supplies the branch target address for the Branch Conditional
to Link Register (bclrx) instruction, and can be used to hold the logical address of the
instruction that follows a branch and link instruction.

Note that although the two least-significant bits can accept any values written to them,
they are ignored when the LR is used as an address.

XER — Integer Exception Register SPR 1

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

SO OV CA Reserved BYTES

RESET:

U U U U U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U U U U U U

Table 3-10 Integer Exception Register Bit Definitions

Bit(s) Name Description

0 SO
Summary Overflow (SO) — The summary overflow bit is set whenever an instruction sets the
overflow bit (OV) to indicate overflow and remains set until software clears it. It is not altered
by compare instructions or other instructions that cannot overflow.

1 OV

Overflow (OV) — The overflow bit is set to indicate that an overflow has occurred during exe-
cution of an instruction. Integer and subtract instructions having OE=1 set OV if the carry out
of bit 0 is not equal to the carry out of bit 1, and clear it otherwise. The OV bit is not altered by
compare instructions or other instructions that cannot overflow.

2 CA

Carry (CA) — In general, the carry bit is set to indicate that a carry out of bit 0 occurred during
execution of an instruction. Add carrying, subtract from carrying, add extended, and subtract
from extended instructions set CA to one if there is a carry out of bit 0, and clear it otherwise.
The CA bit is not altered by compare instructions or other instructions that cannot carry, except
that shift right algebraic instructions set the CA bit to indicate whether any ‘1’ bits have been
shifted out of a negative quantity.

3:24 — Reserved

25:31 BYTES
This field specifies the number of bytes to be transferred by a Load String Word Indexed (lswx)
or Store String Word Indexed (stswx) instruction.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-18

Both conditional and unconditional branch instructions include the option of placing the
effective address of the instruction following the branch instruction in the LR. This is
done regardless of whether the branch is taken.

3.7.7 Count Register (CTR)

The count register (CTR) is a 32-bit register for holding a loop count that can be dec-
remented during execution of branch instructions that contain an appropriately coded
BO field. If the value in CTR is 0 before being decremented, it is –1 afterward. The
count register provides the branch target address for the Branch Conditional to Count
Register (bcctrx) instruction.

3.8 PowerPC VEA Register Set — Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to
those in the UISA register set. The PowerPC VEA register set can be accessed by all
software with either user- or supervisor-level privileges.

The PowerPC VEA includes the time base facility (TB), a 64-bit structure that contains
a 64-bit unsigned integer that is incremented periodically. The frequency at which the
counter is updated is implementation-dependent. For details on the time base clock in
the MPC555, refer to 6.7 MPC555 Time Base (TB), 8.6 MPC555 Internal Clock Sig-
nals, and 8.12.1 System Clock Control Register (SCCR).

The TB consists of two 32-bit registers: time base upper (TBU) and time base lower
(TBL). In the context of the VEA, user-level applications are permitted read-only
access to the TB. The OEA defines supervisor-level access to the TB for writing values
to the TB. Different SPR encodings are provided for reading and writing the time base.

LR — Link Register SPR 8

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

Branch Address

RESET: UNCHANGED

CTR — Count Register SPR 9

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

Loop Count

RESET: UNCHANGED

TB — Time Base (Read Only) SPR 268, 269

0 31 32 63

TBU TBL

RESET: UNCHANGED
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-19

In 32-bit PowerPC implementations such as the RCPU, it is not possible to read the
entire 64-bit time base in a single instruction. The mftb simplified mnemonic copies
the lower half of the time base register (TBL) to a GPR, and the mftbu simplified mne-
monic copies the upper half of the time base (TBU) to a GPR.

3.9 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) includes a number of SPRs
and other registers that are accessible only by supervisor-level instructions. Some
SPRs are RCPU-specific; some RCPU SPRs may not be implemented in other Pow-
erPC processors, or may not be implemented in the same way.

3.9.1 Machine State Register (MSR)

The machine state register is a 32-bit register that defines the state of the processor.
When an exception occurs, the current contents of the MSR are loaded into SRR1,
and the MSR is updated to reflect the exception-processing machine state. The MSR
can also be modified by the mtmsr, sc, and rfi instructions. It can be read by the
mfmsr instruction.

*Reset value of this bit depends on the value of the internal data bus line during reset.

Table 3-12 shows the bit definitions for the MSR.

Table 3-11 Time Base Field Definitions (Read Only)

Bits Name Description

0-31 TBU Time Base (Upper) — The high-order 32 bits of the time base

32-63 TBL Time Base (Lower) — The low-order 32 bits of the time base

MSR — Machine State Register

MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED POW 0 ILE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

EE PR FP ME FE0 SE BE FE1 0 IP IR DR RESERVED RI LE

RESET:

0 0 0 U 0 0 0 0 0 ID1* 0 0 0 0 0 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-20

Table 3-12 Machine State Register Bit Settings

Bit(s) Name Description

0:12 — Reserved

13 POW
Power management enable
0 = Power management disabled (normal operation mode)
1 = Power management enabled (reduced power mode)

14 — Reserved

15 ILE

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.
0 = Processor runs in big-endian mode during exception processing.
1 = Processor runs in little-endian mode during exception processing.

16 EE

External interrupt enable. Interrupts should only be negated while the EE bit is disabled (0).
Software should disable interrupts in the CPU core prior to masking or disabling any interrupt
which might be currently pending at the CPU core. For external interrupts, it is recommended
that the edge triggered interrupt scheme be used.
0 = The processor delays recognition of external interrupts and decrementer exception condi-

tions.
1 = The processor is enabled to take an external interrupt or the decrementer exception.

17 PR
Privilege level
0 = The processor can execute both user- and supervisor-level instructions.
1 = The processor can only execute user-level instructions.

18 FP

Floating-point available
0 = The processor prevents dispatch of floating-point instructions, including floating-point loads,

stores and moves. Floating-point enabled program exceptions can still occur and the FPRs
can still be accessed.

1 = The processor can execute floating-point instructions, and can take floating-point enabled
exception type program exceptions.

19 ME
Machine check enable
0 = Machine check exceptions are disabled.
1 = Machine check exceptions are enabled.

20 FE0 Floating-point exception mode 0 (See Table 3-13.)

21 SE

Single-step trace enable
0 = The processor executes instructions normally.
1 = The processor generates a single-step trace exception upon the successful execution of

the next instruction. When this bit is set, the processor dispatches instructions in strict pro-
gram order. Successful execution means the instruction caused no other exception. Single-
step tracing may not be present on all implementations.

22 BE
Branch trace enable
0 = No trace exception occurs when a branch instruction is completed
1 = Trace exception occurs when a branch instruction is completed

23 FE1 Floating-point exception mode 1 (See Table 3-13.)

24 — Reserved

25 IP
Exception prefix. The setting of this bit specifies the location of the exception vector table.
0 = Exception vector table starts at the physical address 0x0000 0000.
1 = Exception vector table starts at the physical address 0xFFF0 0000.

26 IR

Instruction relocation.
0 = Instruction address translation is off, the BBC IMPU does not check for address permission

attributes.
1 = Instruction address translation is on, the BBC IMPU checks for address permission at-

tributes.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-21

The floating-point exception mode bits are interpreted as shown in Table 3-13.

3.9.2 DAE/Source Instruction Service Register (DSISR)

The 32-bit DSISR identifies the cause of data access and alignment exceptions.

3.9.3 Data Address Register (DAR)

After an alignment exception, the DAR is set to the effective address of a load or store
element.

3.9.4 Time Base Facility (TB) — OEA

As described in 3.8 PowerPC VEA Register Set — Time Base, the time base (TB)
provides a 64-bit incrementing counter. The VEA defines user-level, read-only access

27 DR

Data relocation
0 = Data address translation is off, the L2U DMPU does not check for address permission at-

tributes.
1 = Data address translation is on, the L2U DMPU checks for address permission attributes.

28:29 — Reserved

30 RI
Recoverable exception (for machine check and non-maskable breakpoint exceptions)
0 = Machine state is not recoverable.
1 = Machine state is recoverable.

31 LE
Little-endian mode
0 = Processor operates in big-endian mode during normal processing.
1 = Processor operates in little-endian mode during normal processing.

Table 3-13 Floating-Point Exception Mode Bits

FE[0:1] Mode

00
Ignore exceptions mode — Floating-point exceptions do not cause the
floating-point assist error handler to be invoked.

01, 10, 11
Floating-point precise mode — The system floating-point assist error
handler is invoked precisely at the instruction that caused the enabled
exception.

DSISR — DAE/Source Instruction Service Register SPR 18

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

DSISR

RESET: UNCHANGED

DAR — Data Address Register SPR 19

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

Data Address

RESET: UNCHANGED

Table 3-12 Machine State Register Bit Settings (Continued)

Bit(s) Name Description
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-22

to the TB. Writing to the TB is reserved for supervisor-level applications such as oper-
ating systems and bootstrap routines. The OEA defines supervisor-level, write access
to the TB.

The TB can be written to at the supervisor privilege level only. The mttbl and mttbu
simplified mnemonics write the lower and upper halves of the TB, respectively. The
mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit registers;
setting one leaves the other unchanged. It is not possible to write the entire 64-bit time
base in a single instruction.

For information about reading the time base, refer to 3.8 PowerPC VEA Register Set
— Time Base.

3.9.5 Decrementer Register (DEC)

The decrementer (DEC, SPR 22) is a 32-bit decrementing counter defined by the
MPC555 to provide a decrementer exception after a programmable delay. The DEC
satisfies the following requirements:

• Loading a GPR from the DEC has no effect on the DEC.
• Storing a GPR to the DEC replaces the value in the DEC with the value in the

GPR.
• Whenever bit 0 of the DEC changes from zero to one, a decrementer exception

request (unless masked) is signaled. Multiple DEC exception requests may be re-
ceived before the first exception occurs; however, any additional requests are
canceled when the exception occurs for the first request.

• If the DEC is altered by software and the content of bit 0 is changed from zero to
one, an exception request is signaled.

• PORESET resets and stops the decrementer, HRESET/SRESET do not.

The decrementer frequency is based on a subdivision of the processor clock. A bit in
the system clock control register (SCCR) in the SIU determines the clock source of
both the decrementer and the time base. For details on the decrementer and time base
clock in the MPC555, refer to 6.6 MPC555 Decrementer, 8.6 MPC555 Internal Clock
Signals, and 8.12.1 System Clock Control Register (SCCR).

TB — Time Base (Write Only) SPR 284, 285

0 31 32 63

TBU TBL

RESET: UNCHANGED

Table 3-14 Time Base Field Definitions (Write Only)

Bits Name Description

0:31 TBU Time Base (Upper) — The high-order 32 bits of the time base

32:63 TBL Time Base (Lower) — The low-order 32 bits of the time base
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-23

The DEC does not run after power-up and must be enabled by setting the TBE bit in
the TBSCR register, see Table 6-16. Power-on reset stops its counting and clears the
register. A decrementer exception may be signaled to software prior to initialization.

3.9.6 Machine Status Save/Restore Register 0 (SRR0)

The machine status save/restore register 0 (SRR0) is a 32-bit register that identifies
where instruction execution should resume when an rfi instruction is executed follow-
ing an exception. It also holds the effective address of the instruction that follows the
System Call (sc) instruction.

When an exception occurs, SRR0 is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun exe-
cution. The instruction addressed by SRR0 may not have completed execution,
depending on the exception type. SRR0 addresses either the instruction causing the
exception or the immediately following instruction. The instruction addressed can be
determined from the exception type and status bits.

When an exception occurs, SRR0 is set to point to an instruction such that all prior
instructions have completed execution and no subsequent instruction has begun exe-
cution. The instruction addressed by SRR0 may not have completed execution,
depending on the exception type. SRR0 addresses either the instruction causing the
exception or the immediately following instruction. The instruction addressed can be
determined from the exception type and status bits.

3.9.7 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is a 32-bit register used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed.

DEC — Decrementer Register SPR 22

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

Decrementing Counter

RESET: UNCHANGED

SRR0 — Machine Status Save/Restore Register 0 SPR 26

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

SRR0

RESET: UNDEFINED

SRR1 — Machine Status Save/Restore Register 1 SPR 27

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

SRR1

RESET: UNDEFINED
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-24

In general, when an exception occurs, SRR1[0:15] are loaded with exception-specific
information, and MSR[16:31] are placed into SRR1[16:31].

3.9.8 General SPRs (SPRG0–SPRG3)

SPRG0–SPRG3 are 32-bit registers provided for general operating system use, such
as performing a fast-state save and for supporting multiprocessor implementations.
SPRG0–SPRG3 are shown below.

Uses for SPRG0–SPRG3 are shown in Table 3-15.

3.9.9 Processor Version Register (PVR)

The PVR is a 32-bit, read-only register that identifies the version and revision level of
the PowerPC processor. The contents of the PVR can be copied to a GPR by the
mfspr instruction. Read access to the PVR is available in supervisor mode only; write
access is not provided.

SPRG0–SPRG3 — General Special-Purpose Registers 0–3 SPR 272 – SPR 275

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

SPRG0

SPRG1

SPRG2

SPRG3

RESET: UNCHANGED

Table 3-15 Uses of SPRG0–SPRG3

Register Description

SPRG0 Software may load a unique physical address in this register to identify an area of memory reserved for
use by the exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the exception handler to save the content of a GPR.
That GPR then can be loaded from SPRG0 and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

PVR — Processor Version Register SPR 287

MSB
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

VERSION REVISION

RESET: UNCHANGED
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-25

3.9.10 Implementation-Specific SPRs

The MPC555 includes several implementation-specific SPRs that are not defined by
the PowerPC architecture. These registers can be accessed by supervisor-level
instructions only. These registers are listed in Table 3-2 and Table 3-3.

3.9.10.1 EIE, EID, and NRI Special-Purpose Registers

The RCPU includes three implementation-specific SPRs to facilitate the software
manipulation of the MSR[RI] and MSR[EE] bits. Issuing the mtspr instruction with one
of these registers as an operand causes the RI and EE bits to be set or cleared as
shown in Table 3-17.

A read (mfspr) of any of these locations is treated as an unimplemented instruction,
resulting in a software emulation exception.

3.9.10.2 Floating-Point Exception Cause Register (FPECR)

The FPECR is a 32-bit supervisor-level internal status and control register used by the
floating-point assist firmware envelope. It contains four status bits indicating whether
the result of the operation is tiny and whether any of three source operands are denor-
malized. In addition, it contains one control bit to enable or disable SIE mode. This
register must not be accessed by user code.

Table 3-16 Processor Version Register Bit Settings

Bit(s) Name Description

0:15 VERSION
A 16-bit number that identifies the version of the processor and of the PowerPC architec-
ture. MPC555 value is 0x0002.

16:31 REVISION
A 16-bit number that distinguishes between various releases of a particular version. The
MPC555 value is 0x0020.

Table 3-17 EIE, EID, AND NRI Registers

SPR Number
(Decimal) Mnemonic MSR[EE] MSR[RI]

80 EIE 1 1

81 EID 0 1

82 NRI 0 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-26

A listing of FPECR bit settings is shown in Table 3-18.

NOTE

Software must insert a sync instruction before reading the FPECR.

3.9.10.3 Additional Implementation-Specific Registers

Refer to the following sections for details on additional implementation-specific regis-
ters in the MPC555:

• 4.6 Burst Buffer Programming Model
• 6.13.1.2 Internal Memory Map Register
• 11.8 L2U Programming Model
• SECTION 21 DEVELOPMENT SUPPORT

FPECR — Floating-Point Exception Cause Register

MSB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIE RESERVED

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LSB
31

RESERVED DNC DNB DNA TR

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3-18 FPECR Bit Settings

Bit(s) Name Description

0 SIE
SIE mode control bit
0 = Disable SIE mode
1 = Enable SIE mode

[1:27] — Reserved

28 DNC
Source operand C denormalized status bit
0 = Source operand C is not denormalized
1 = Source operand C is denormalized

29 DNB
Source operand B denormalized status bit
0 = Source operand B is not denormalized
1 = Source operand B is denormalized

30 DNA
Source operand A denormalized status bit
0 = Source operand A is not denormalized
1 = Source operand A is denormalized

31 TR
Floating-point tiny result
0 = Floating-point result is not tiny
1 = Floating-point result is tiny
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-27

3.10 Instruction Set

All PowerPC instructions are encoded as single words (32 bits). Instruction formats are
consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly sim-
plifies instruction pipelining.

The PowerPC instructions are divided into the following categories:

• Integer instructions include computational and logical instructions.
— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions

• Floating-point instructions include floating-point computational instructions, as
well as instructions that affect the floating-point status and control register (FP-
SCR).
— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions

• Load/store instructions include integer and floating-point load and store instruc-
tions.
— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store
— Primitives used to construct atomic memory operations (lwarx and stwcx. in-

structions)
• Flow control instructions include branching instructions, condition register logical

instructions, trap instructions, and other instructions that affect the instruction
flow.
— Branch and trap instructions
— Condition register logical instructions

• Processor control instructions are used for synchronizing memory accesses.
— Move to/from SPR instructions
— Move to/from MSR
— Synchronize
— Instruction synchronize

Note that this grouping of the instructions does not indicate which execution unit exe-
cutes a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are
four bytes long and word-aligned. It provides for byte, half-word, and word operand
loads and stores between memory and a set of 32 GPRs.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-28

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory con-
tents must be loaded into a register, modified, and then written back to the target
location with distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution
state. However, the flow of instructions can be interrupted directly by the execution of
an instruction or by an asynchronous event. Either kind of exception may cause one
of several components of the system software to be invoked.

3.10.1 Instruction Set Summary

Table 3-19 provides a summary of RCPU instructions. Refer to the RCPU Reference
Manual (RCPURM/AD) for a detailed description of the instruction set.

Table 3-19 Instruction Set Summary

Mnemonic Operand Syntax Name

add (add. addo addo.) rD,rA,rB Add

addc (addc. addco addco.) rD,rA,rB Add Carrying

adde (adde. addeo addeo.) rD,rA,rB Add Extended

addi rD,rA,SIMM Add Immediate

addic rD,rA,SIMM Add Immediate Carrying

addic. rD,rA,SIMM Add Immediate Carrying and Record

addis rD,rA,SIMM Add Immediate Shifted

addme (addme. addmeo addmeo.) rD,rA Add to Minus One Extended

addze (addze. addzeo addzeo.) rD,rA Add to Zero Extended

and (and.) rA,rS,rB AND

andc (andc.) rA,rS,rB AND with Complement

andi. rA,rS,UIMM AND Immediate

andis. rA,rS,UIMM AND Immediate Shifted

b (ba bl bla) target_addr Branch

bc (bca bcl bcla) BO,BI,target_addr Branch Conditional

bcctr (bcctrl) BO,BI Branch Conditional to Count Register

bclr (bclrl) BO,BI Branch Conditional to Link Register

cmp crfD,L,rA,rB Compare

cmpi crfD,L,rA,SIMM Compare Immediate

cmpl crfD,L,rA,rB Compare Logical

cmpli crfD,L,rA,UIMM Compare Logical Immediate

cntlzw (cntlzw.) rA,rS Count Leading Zeros Word

crand crbD,crbA,crbB Condition Register AND

crandc crbD,crbA, crbB Condition Register AND with Complement

creqv crbD,crbA, crbB Condition Register Equivalent

crnand crbD,crbA,crbB Condition Register NAND

crnor crbD,crbA,crbB Condition Register NOR

cror crbD,crbA,crbB Condition Register OR
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-29

crorc crbD,crbA, crbB Condition Register OR with Complement

crxor crbD,crbA,crbB Condition Register XOR

divw (divw. divwo divwo.) rD,rA,rB Divide Word

divwu divwu. divwuo divwuo. rD,rA,rB Divide Word Unsigned

eieio — Enforce In-Order Execution of I/O

eqv (eqv.) rA,rS,rB Equivalent

extsb (extsb.) rA,rS Extend Sign Byte

extsh (extsh.) rA,rS Extend Sign Half Word

fabs (fabs.) frD,frB Floating Absolute Value

fadd (fadd.) frD,frA,frB Floating Add (Double-Precision)

fadds (fadds.) frD,frA,frB Floating Add Single

fcmpo crfD,frA,frB Floating Compare Ordered

fcmpu crfD,frA,frB Floating Compare Unordered

fctiw (fctiw.) frD,frB Floating Convert to Integer Word

fctiwz (fctiwz.) frD,frB
Floating Convert to Integer Word with Round to-
ward Zero

fdiv (fdiv.) frD,frA,frB Floating Divide (Double-Precision)

fdivs (fdivs.) frD,frA,frB Floating Divide Single

fmadd (fmadd.) frD,frA,frC,frB Floating Multiply-Add (Double-Precision)

fmadds (fmadds.) frD,frA,frC,frB Floating Multiply-Add Single

fmr (fmr.) frD,frB Floating Move Register

fmsub (fmsub.) frD,frA,frC,frB Floating Multiply-Subtract (Double-Precision)

fmsubs (fmsubs.) frD,frA,frC,frB Floating Multiply-Subtract Single

fmul (fmul.) frD,frA,frC Floating Multiply (Double-Precision)

fmuls (fmuls.) frD,frA,frC Floating Multiply Single

fnabs (fnabs.) frD,frB Floating Negative Absolute Value

fneg (fneg.) frD,frB Floating Negate

fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Preci-
sion)

fnmadds (fnmadds.) frD,frA,frC,frB Floating Negative Multiply-Add Single

fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-
Precision)

fnmsubs (fnmsubs.) frD,frA,frC,frB Floating Negative Multiply-Subtract Single

frsp (frsp.) frD,frB Floating Round to Single

fsub (fsub.) frD,frA,frB Floating Subtract (Double-Precision)

fsubs (fsubs.) frD,frA,frB Floating Subtract Single

isync — Instruction Synchronize

lbz rD,d(rA) Load Byte and Zero

lbzu rD,d(rA) Load Byte and Zero with Update

lbzux rD,rA,rB Load Byte and Zero with Update Indexed

lbzx rD,rA,rB Load Byte and Zero Indexed

lfd frD,d(rA) Load Floating-Point Double

lfdu frD,d(rA) Load Floating-Point Double with Update

Table 3-19 Instruction Set Summary (Continued)

Mnemonic Operand Syntax Name
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-30

lfdux frD,rA,rB
Load Floating-Point Double with Update
Indexed

lfdx frD,rA,rB Load Floating-Point Double Indexed

lfs frD,d(rA) Load Floating-Point Single

lfsu frD,d(rA) Load Floating-Point Single with Update

lfsux frD,rA,rB Load Floating-Point Single with Update Indexed

lfsx frD,rA,rB Load Floating-Point Single Indexed

lha rD,d(rA) Load Half-Word Algebraic

lhau rD,d(rA) Load Half-Word Algebraic with Update

lhaux rD,rA,rB Load Half-Word Algebraic with Update Indexed

lhax rD,rA,rB Load Half-Word Algebraic Indexed

lhbrx rD,rA,rB Load Half-Word Byte-Reverse Indexed

lhz rD,d(rA) Load Half-Word and Zero

lhzu rD,d(rA) Load Half-Word and Zero with Update

lhzux rD,rA,rB Load Hal-Word and Zero with Update Indexed

lhzx rD,rA,rB Load Half-Word and Zero Indexed

lmw rD,d(rA) Load Multiple Word

lswi rD,rA,NB Load String Word Immediate

lswx rD,rA,rB Load String Word Indexed

lwarx rD,rA,rB Load Word and Reserve Indexed

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed

lwz rD,d(rA) Load Word and Zero

lwzu rD,d(rA) Load Word and Zero with Update

lwzux rD,rA,rB Load Word and Zero with Update Indexed

lwzx rD,rA,rB Load Word and Zero Indexed

mcrf crfD,crfS Move Condition Register Field

mcrfs crfD,crfS Move to Condition Register from FPSCR

mcrxr crfD Move to Condition Register from XER

mfcr rD Move from Condition Register

mffs (mffs.) frD Move from FPSCR

mfmsr rD Move from Machine State Register

mfspr rD,SPR Move from Special Purpose Register

mftb rD, TBR Move from Time Base

mtcrf CRM,rS Move to Condition Register Fields

mtfsb0 (mtfsb0.) crbD Move to FPSCR Bit 0

mtfsb1 (mtfsb1.) crbD Move to FPSCR Bit 1

mtfsf (mtfsf.) FM,frB Move to FPSCR Fields

mtfsfi (mtfsfi.) crfD,IMM Move to FPSCR Field Immediate

mtmsr rS Move to Machine State Register

mtspr SPR,rS Move to Special Purpose Register

mulhw (mulhw.) rD,rA,rB Multiply High Word

mulhwu (mulhwu.) rD,rA,rB Multiply High Word Unsigned

Table 3-19 Instruction Set Summary (Continued)

Mnemonic Operand Syntax Name
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-31

mulli rD,rA,SIMM Multiply Low Immediate

mullw (mullw. mullwo mullwo.) rD,rA,rB Multiply Low

nand (nand.) rA,rS,rB NAND

neg (neg. nego nego.) rD,rA Negate

nor (nor.) rA,rS,rB NOR

or (or.) rA,rS,rB OR

orc (orc.) rA,rS,rB OR with Complement

ori rA,rS,UIMM OR Immediate

oris rA,rS,UIMM OR Immediate Shifted

rfi — Return from Interrupt

rlwimi (rlwimi.) rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert

rlwinm (rlwinm.) rA,rS,SH,MB,ME
Rotate Left Word Immediate then AND with
Mask

rlwnm (rlwnm.) rA,rS,rB,MB,ME Rotate Left Word then AND with Mask

sc — System Call

slw (slw.) rA,rS,rB Shift Left Word

sraw (sraw.) rA,rS,rB Shift Right Algebraic Word

srawi (srawi.) rA,rS,SH Shift Right Algebraic Word Immediate

srw (srw.) rA,rS,rB Shift Right Word

stb rS,d(rA) Store Byte

stbu rS,d(rA) Store Byte with Update

stbux rS,rA,rB Store Byte with Update Indexed

stbx rS,rA,rB Store Byte Indexed

stfd frS,d(rA) Store Floating-Point Double

stfdu frS,d(rA) Store Floating-Point Double with Update

stfdux frS,rB
Store Floating-Point Double with Update
Indexed

stfdx frS,rB Store Floating-Point Double Indexed

stfiwx frS,rB Store Floating-Point as Integer Word Indexed

stfs frS,d(rA) Store Floating-Point Single

stfsu frS,d(rA) Store Floating-Point Single with Update

stfsux frS,rB Store Floating-Point Single with Update Indexed

stfsx frS,r B Store Floating-Point Single Indexed

sth rS,d(rA) Store Half Word

sthbrx rS,rA,rB Store Half Word Byte-Reverse Indexed

sthu rS,d(rA) Store Half Word with Update

sthux rS,rA,rB Store Half Word with Update Indexed

sthx rS,rA,rB Store Half Word Indexed

stmw rS,d(rA) Store Multiple Word

stswi rS,rA,NB Store String Word Immediate

stswx rS,rA,rB Store String Word Indexed

stw rS,d(rA) Store Word

Table 3-19 Instruction Set Summary (Continued)

Mnemonic Operand Syntax Name
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-32

3.10.2 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for
some frequently used operations (such as no-op, load immediate, load address, move
register, and complement register).

For a complete list of simplified mnemonics, see the RCPU Reference Manual
(RCPURM/AD). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described
in that manual.

3.10.3 Calculating Effective Addresses

The effective address (EA) is the 32-bit address computed by the processor when exe-
cuting a memory access or branch instruction or when fetching the next sequential
instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rA|0) + 16-bit offset (including offset = 0) (register indirect with immediate
index)

• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory
accesses. Calculation of the effective address for aligned transfers occurs in a single
clock cycle.

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed

stwcx. rS,rA,rB Store Word Conditional Indexed

stwu rS,d(rA) Store Word with Update

stwux rS,rA,rB Store Word with Update Indexed

stwx rS,rA,rB Store Word Indexed

subf (subf. subfo subfo.) rD,rA,rB Subtract From

subfc (subfc. subfco subfco.) rD,rA,rB Subtract from Carrying

subfe (subfe. subfeo subfeo.) rD,rA,rB Subtract from Extended

subfic rD,rA,SIMM Subtract from Immediate Carrying

subfme (subfme. subfmeo subfmeo.) rD,rA Subtract from Minus One Extended

subfze (subfze. subfzeo subfzeo.) rD,rA Subtract from Zero Extended

sync — Synchronize

tw TO,rA,rB Trap Word

twi TO,rA,SIMM Trap Word Immediate

xor (xor.) rA,rS,rB XOR

xori rA,rS,UIMM XOR Immediate

xoris rA,rS,UIMM XOR Immediate Shifted

Table 3-19 Instruction Set Summary (Continued)

Mnemonic Operand Syntax Name
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-33

For a memory access instruction, if the sum of the effective address and the operand
length exceeds the maximum effective address, the storage operand is considered to
wrap around from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit
unsigned binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

3.11 Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor
state as a result of external signals, errors, or unusual conditions arising in the execu-
tion of instructions. When exceptions occur, information about the state of the
processor is saved to certain registers, and the processor begins execution at an
address (exception vector) predetermined for each exception. Processing of excep-
tions occurs in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception — for example, the DAE/source instruction service register (DSISR). Addi-
tionally, some exception conditions can be explicitly enabled or disabled by software.

3.11.1 Exception Classes

The MPC555 exception classes are shown in Table 3-20.

3.11.2 Ordered Exceptions

In the MPC555, all exceptions except for reset, debug port non-maskable interrupts,
and machine check exceptions are ordered. Ordered exceptions satisfy the following
criteria:

• Only one exception is reported at a time. If, for example, a single instruction en-
counters multiple exception conditions, those conditions are encountered se-
quentially. After the exception handler handles an exception, instruction
execution continues until the next exception condition is encountered.

• When the exception is taken, no program state is lost.

3.11.3 Unordered Exceptions

Unordered exceptions may be reported at any time and are not guaranteed to pre-
serve program state information. The processor can never recover from a reset
exception. It can recover from other unordered exceptions in most cases. However, if

Table 3-20 MPC555 Exception Classes

Class Exception Type

Asynchronous, unordered
Machine check
System reset

Asynchronous, ordered
External interrupt

Decrementer

Synchronous (ordered, precise) Instruction-caused exceptions
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-34

a debug port non-maskable interrupt or machine check exception occurs during the
servicing of a previous exception, the machine state information in SRR0 and SRR1
(and, in some cases, the DAR and DSISR) may not be recoverable; the processor may
be in the process of saving or restoring these registers.

To determine whether the machine state is recoverable, the user can read the RI
(recoverable exception) bit in SRR1. During exception processing, the RI bit in the
MSR is copied to SRR1 and then cleared. The operating system should set the RI bit
in the MSR at the end of each exception handler’s prologue (after saving the program
state) and clear the bit at the start of each exception handler’s epilogue (before restor-
ing the program state). Then, if an unordered exception occurs during the servicing of
an exception handler, the RI bit in SRR1 will contain the correct value.

3.11.4 Precise Exceptions

In the MPC555, all synchronous (instruction-caused) exceptions are precise. When a
precise exception occurs, the processor backs the machine up to the instruction caus-
ing the exception. This ensures that the machine is in its correct architecturally-defined
state. The following conditions exist at the point a precise exception occurs:

1. Architecturally, no instruction following the faulting instruction in the code
stream has begun execution.

2. All instructions preceding the faulting instruction appear to have completed with
respect to the executing processor.

3. SRR0 addresses either the instruction causing the exception or the immediate-
ly following instruction. Which instruction is addressed can be determined from
the exception type and the status bits.

4. Depending on the type of exception, the instruction causing the exception may
not have begun execution, may have partially completed, or may have complet-
ed execution.

3.11.5 Exception Vector Table

The setting of the exception prefix (IP) bit in the MSR determines how exceptions are
vectored. If the bit is cleared, the exception vector table begins at the physical address
0x0000 0000; if IP is set, the exception vector table begins at the physical address
0xFFF0 0000. Table 3-21 shows the exception vector offset of the first instruction of
the exception handler routine for each exception type.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-35

3.12 Instruction Timing

The MPC555 processor is pipelined. Because the processing of an instruction is bro-
ken into a series of stages, an instruction does not require the entire resources of the
processor.

Table 3-21 Exception Vector Offset Table

Vector Offset
(Hexadecimal) Exception Type

00000 Reserved

00100 System reset, NMI interrupt

00200 Machine check

00300 Reserved

00400 Reserved

00500 External interrupt

00600 Alignment

00700 Program

00800 Floating-point unavailable

00900 Decrementer

00A00 Reserved

00B00 Reserved

00C00 System call

00D00 Trace

00E00 Floating-point assist

01000 Implementation-dependent software emulation

01100 Reserved

01200 Reserved

01300 Implementation-dependent instruction protection error

01400 Implementation-dependent data protection error

01500–01BFF Reserved

01C00 Implementation-dependent data breakpoint

01D00 implementation-dependent instruction breakpoint

01E00 Implementation-dependent maskable external breakpoint

01F00 Implementation-dependent non-maskable external breakpoint
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-36

The instruction pipeline in the MPC555 has four stages:

1. The dispatch stage is implemented using a distributed mechanism. The central
dispatch unit broadcasts the instruction to all units. In addition, scoreboard in-
formation (regarding data dependencies) is broadcast to each execution unit.
Each execution unit decodes the instruction. If the instruction is not implement-
ed, a program exception is taken. If the instruction is legal and no data depen-
dency is found, the instruction is accepted by the appropriate execution unit,
and the data found in the destination register is copied to the history buffer. If a
data dependency exists, the machine is stalled until the dependency is re-
solved.

2. In the execute stage, each execution unit that has an executable instruction ex-
ecutes the instruction. (For some instructions, this occurs over multiple cycles.)

3. In the writeback stage, the execution unit writes the result to the destination reg-
ister and reports to the history buffer that the instruction is completed.

4. In the retirement stage, the history buffer retires instructions in architectural or-
der. An instruction retires from the machine if it completes execution with no ex-
ceptions and if all instructions preceding it in the instruction stream have
finished execution with no exceptions. As many as six instructions can be re-
tired in one clock.

The history buffer maintains the correct architectural machine state. An exception is
taken only when the instruction is ready to be retired from the machine (i.e., after all
previously-issued instructions have already been retired from the machine). When an
exception is taken, all instructions following the excepting instruction are canceled,
i.e., the values of the affected destination registers are restored using the values saved
in the history buffer during the dispatch stage.

Figure 3-4 shows basic instruction pipeline timing.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-37

Figure 3-4 Basic Instruction Pipeline

Table 3-22 indicates the latency and blockage for each type of instruction. Latency
refers to the interval from the time an instruction begins execution until it produces a
result that is available for use by a subsequent instruction. Blockage refers to the inter-
val from the time an instruction begins execution until its execution unit is available for
a subsequent instruction. Note that when the blockage equals the latency, it is not pos-
sible to issue another instruction to the same unit in the same cycle in which the first
instruction is being written back.

Table 3-22 Instruction Latency and Blockage

Instruction Type Precision Latency Blockage

Floating-point
multiply-add

Double
Single

7
6

7
6

Floating-point
add or subtract

Double
Single

4
4

4
4

Floating-point multiply
Double
Single

5
4

5
4

Floating-point divide
Double
Single

17
10

17
10

Integer multiply — 2 1 or 21

NOTES:
1. Refer to Section 7 Instruction Timing, in the RCPU Reference Manual

(RCPURM/AD) for details.

Integer divide — 2 to 111 2 to 111

 Integer load/store — See note1 See note1

I1 I2

I1

I1

I1

I1

LOAD

I1

STORE

I1

I1

����������������������� ������� ���������������������������������� ����������������������������������
I3

����������
���
�����
�����

I2

I2

I2

����������������
�����
�����
�����FETCH

DECODE

READ AND EXECUTE

WRITE BACK (TO DEST REG)

L ADDRESS DRIVE

L DATA

LOAD WRITE BACK

BRANCH DECODE

BRANCH EXECUTE

����������������������� ������� ���������������������������������� ����������������������������������
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-38

3.13 PowerPC User Instruction Set Architecture (UISA)

3.13.1 Computation Modes

The core of the MPC555 is a 32-bit implementation of the PowerPC architecture. Any
reference in the PowerPC Architecture Books (UISA, VEA, OEA) regarding 64-bit
implementations are not supported by the core. All registers except the floating-point
registers are 32 bits wide.

3.13.2 Reserved Fields

Reserved fields in instructions are described under the specific instruction definition
sections. Unless otherwise stated in the specific instruction description, fields marked
“I”, “II” and “III” in the instruction are discarded by the core decoding. Thus, this type of
invalid form instructions yield results of the defined instructions with the appropriate
field zero.

In most cases, the reserved fields in registers are ignored on write and return zeros for
them on read on any control register implemented by the core. Exception to this rule
are bits 16:23 of the fixed-point exception cause register (XER) and the reserved bits
of the machine state register (MSR), which are set by the source value on write and
return the value last set for it on read.

3.13.3 Classes of Instructions

Non-optional instructions are implemented by the hardware. Optional instructions are
executed by implementation-dependent code and any attempt to execute one of these
commands causes the core to take the implementation-dependent software emulation
interrupt (offset 0x01000 of the vector table).

Illegal and reserved instruction class instructions are supported by implementation-
dependent code and, thus, the core hardware generates the implementation-depen-
dent software emulation interrupt. Invalid and preferred instruction forms treatment by
the core is described under the specific processor compliance sections.

3.13.4 Exceptions

Invocation of the system software for any instruction-caused exception in the core is
precise, regardless of the type and setting.

3.13.5 The Branch Processor

3.13.6 Instruction Fetching

The core fetches a number of instructions into its internal buffer (the instruction pre-
fetch queue) prior to execution. If a program modifies the instructions it intends to exe-
cute, it should call a system library program to ensure that the modifications have been
made visible to the instruction fetching mechanism prior to execution of the modified
instructions.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-39

3.13.7 Branch Instructions

The core implements all the instructions defined for the branch processor by the UISA
in the hardware. For performance of various instructions, refer to Table 3-22 of this
manual.

3.13.7.1 Invalid Branch Instruction Forms

Bits marked with z in the BO encoding definition are discarded by the core decoding.
Thus, these types of invalid form instructions yield result of the defined instructions
with the z bit zero. If the decrement and test CTR option is specified for the bcctr or
bcctrl instructions, the target address of the branch is the new value of the CTR. Con-
dition is evaluated correctly, including the value of the counter after decrement.

3.13.7.2 Branch Prediction

The core uses the y bit to predict path for pre-fetch. Prediction is only done for not-
ready branch conditions. No prediction is done for branches to link or count register if
the target address is not ready. Refer to RCPU Reference Manual (Conditional Branch
Control) for more information.

3.13.8 The Fixed-Point Processor

3.13.8.1 Fixed-Point Instructions

The core implements the following instructions:

• Fixed-point arithmetic instructions
• Fixed-point compare instructions
• Fixed-point trap instructions
• Fixed-point logical instructions
• Fixed-point rotate and shift instructions
• Move to/from system register instructions

All instructions are defined for the fixed-point processor in the UISA in the hardware.
For performance of the various instructions, refer to Table 3-22.

— Move To/From System Register Instructions. Move to/from invalid special
registers in which spr0 = 1 yields invocation of the privilege instruction error in-
terrupt handler if the processor is in problem state. For a list of all implemented
special registers, refer to Table 3-2 Supervisor-Level SPRs, and Table 3-3
Development Support SPRs.

— Fixed-Point Arithmetic Instructions. If an attempt is made to perform any of
the divisions in the divw[o][.] instruction:
0x80000000 ÷ -1
<anything> ÷ 0
Then, the contents of RT are 0x80000000 and if Rc =1, the contents of bits in
CR field 0 are LT = 1, GT = 0, EQ = 0, and SO is set to the correct value. If an
attempt is made to perform any of the divisions in the divw[o][.] instruction,
<anything> ÷ 0. Then, the contents of RT are 0x80000000 and if Rc = 1, the
contents of bits in CR field 0 are LT = 1, GT = 0, EQ = 0, and SO is set to the
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-40

correct value. In cmpi, cmp, cmpli, and cmpl instructions, the L-bit is applicable
for 64-bit implementations. In 32-bit implementations, if L = 1 the instruction
form is invalid. The core ignores this bit and therefore, the behavior when L =
1 is identical to the valid form instruction with L = 0

3.13.9 Floating-Point Processor

3.13.9.1 General

The core implements all floating-point features as defined in the UISA, including the
non-IEEE working mode. Some features require software assistance. For more infor-
mation refer to RCPU Reference Manual (Floating-point Load Instructions) for more
information.

3.13.9.2 Optional instructions

The only optional instruction implemented by MPC555 hardware is Store Floating-
Point as Integer Word Indexed (stfiwx). An attempt to execute any other optional
instruction causes the implementation dependent software emulation interrupt to be
taken.

3.13.10 Load/Store Processor

The load/store processor supports all of the 32-bit implementation fixed-point Pow-
erPC load/store instructions in the hardware.

3.13.10.1 Fixed-Point Load With Update and Store With Update Instructions

For load with update and store with update instructions, where RA = 0, the EA is writ-
ten into R0. For load with update instructions, where RA = RT, RA is boundedly
undefined.

3.13.10.2 Fixed-Point Load and Store Multiple Instructions

For these types of instructions, EA must be a multiple of four. If it is not, the system
alignment error handler is invoked. For a lmw instruction (if RA is in the range of reg-
isters to be loaded), the instruction completes normally. RA is then loaded from the
memory location as follows:

RA ← MEM(EA+(RA-RT)*4, 4)

3.13.10.3 Fixed-Point Load String Instructions

Load string instructions behave the same as load multiple instructions, with respect to
invalid format in which RA is in the range of registers to be loaded. In case RA is in the
range, it is updated from memory.

3.13.10.4 Storage Synchronization Instructions

For these type of instructions, EA must be a multiple of four. If it is not, the system
alignment error handler is invoked.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-41

3.13.10.5 Floating-Point Load and Store With Update Instructions

For Load and Store with update instructions, if RT = 0 then the EA is written into R0.

3.13.10.6 Floating-Point Load Single Instructions

In case the operand falls in the range of a single denormalized number the Floating-
Point Assist Interrupt handler is invoked.

Refer to RCPU Reference Manual (Floating-Point Assist for Denormalized Operands)
for complete description of handling denormalized floating-point numbers.

3.13.10.7 Floating-Point Store Single Instructions

In case the operand falls in the range of a single denormalized number, the Floating-
Point Assist Interrupt handler is invoked.

In case the operand is ZERO it is converted to the correct signed ZERO in single-pre-
cision format.

In case the operand is between the range of single denormalized and double denor-
malized it is considered a programming error. The hardware will handle this case as if
the operand was single denormalized.

In case the operand falls in the range of double denormalized numbers it is considered
a programming error. The hardware will handle this case as if the operand was ZERO.

The following check is done on the stored operand in order to determine whether it is
a denormalized single-precision operand and invoke the Floating-Point Assist Inter-
rupt handler:

(FRS1:11 ≠ 0) AND (FRS1:11 ≤ 896)

Refer to RCPU Reference Manual (Floating-Point Assist for Denormalized Operands)
for complete description of handling denormalized floating-point numbers.

3.13.10.8 Optional Instructions

No optional instructions are supported.

3.13.10.9 Little-Endian Byte Ordering

The load/store unit supports little-endian byte ordering as specified in the UISA. In lit-
tle-endian mode, if an attempt is made to execute an individual scalar unaligned
transfer, as well as a multiple or string instruction, an alignment interrupt is taken.

3.14 PowerPC Virtual Environment Architecture (VEA)

3.14.1 Atomic Update Primitives

Both the lwarx and stwcx instructions are implemented according to the PowerPC
architecture requirements. The MPC555 does not provide support for snooping an
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-42

external bus activity outside the chip. The provision is made to cancel the reservation
inside the MPC555 by using the CR_B and KR_B input pins.

3.14.2 Effect of Operand Placement on Performance

The load/store unit hardware supports all of the PowerPC load/store instructions. An
optimal performance is obtained for naturally aligned operands. These accesses result
in optimal performance (one bus cycle) for up to 4 bytes size and good performance
(two bus cycles) for double precision floating-point operands. Unaligned operands are
supported in hardware and are broken into a series of aligned transfers. The effect of
operand placement on performance is as stated in the VEA, except for the case of 8-
byte operands. In that case, since the MPC555 uses a 32-bit wide data bus, the per-
formance is good rather than optimal.

3.14.3 Storage Control Instructions

The MPC555 does not implement cache control instructions (icbi, isync, dcbt, dcbi,
dcbf, dcbz, dcbst, and dcbtst) .

3.14.4 Instruction Synchronize (isync) Instruction

The isync instruction causes a reflect which waits for all prior instructions to complete
and then executes the next sequential instruction. Any instruction after an isync will
see all effects of prior instructions.

3.14.4.1 Enforce In-Order Execution of I/O (eieio) Instruction

When executing an eieio instruction, the load/store unit will wait until all previous
accesses have terminated before issuing cycles associated with load/store instruc-
tions following the eieio instruction.

3.14.5 Timebase

A description of the timebase register may be found in SECTION 6 SYSTEM CONFIG-
URATION AND PROTECTION and in SECTION 8 CLOCKS AND POWER
CONTROL.

3.15 POWERPC Operating Environment Architecture (OEA)

The MPC555 has an internal memory space that includes memory-mapped control
registers and internal memory used by various modules on the chip. This memory is
part of the main memory as seen by the core but cannot be accessed by any external
system master.

3.15.1 Branch Processor Registers

3.15.1.1 Machine State Register (MSR)

The Floating-Point exception mode encoding in the MPC555 core is as follows:
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-43

:

The SF bit is reserved set to zero

The IP bit initial state after reset is set as programmed by the reset configuration as
specified by the USIU specification.

3.15.1.2 Branch Processors Instructions

The core implements all the instructions defined for the branch processor in the UISA
in the hardware.

3.15.2 Fixed-Point Processor

3.15.2.1 Special Purpose Registers

• Unsupported Registers — The following registers are not supported by the
MPC555: SDR, EAR, IBAT0U, IBAT0L, IBAT1U, IBAT1L, IBAT2U, IBAT2L,
IBAT3U, IBAT3L, DBAT0U, DBAT0L, DBAT1U, DBAT1L, DBAT2L, DBAT3U,
DBAT3L

• Added Registers — For a list of added special purpose registers, refer to Table
3-2, and Table 3-3.

3.15.3 Storage Control Instructions

Storage Control Instructions mtsr, mtsrin, mfsr, mfsrin, dcbi, tlbie, tlbia, and tlb-
sync are not implemented by the MPC555.

3.15.4 Interrupts

The core implements all storage-associated interrupts as precise interrupts. This
means that a load/store instruction is not complete until all possible error indications
have been sampled from the load/store bus. This also implies that a store, or a non-
speculative load instruction is not issued to the load/store bus until all previous
instructions have completed. In case of a late error, a store cycle (or a nonspeculative
load cycle) can be issued and then aborted.

In each interrupt handler, when registers SRR0 and SRR1 are saved, MSRRI can be
set to 1.

The following paragraphs define the types of OEA interrupts The exception table vec-
tor defines the offset value by interrupt type. Refer to Table 3-21.

Table 3-23 Floating-Point Exception Mode Encoding

Mode FE0 FE1

Ignore exceptions 0 0

Precise 0 1

Precise 1 0

Precise 1 1
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-44

3.15.4.1 System Reset Interrupt

A system reset interrupt occurs when the IRQ0 pin is asserted and the following reg-
isters are set.

3.15.4.2 Machine Check Interrupt

A machine check interrupt indication is received from the U-bus as a possible
response either to the address or data phase. It is usually caused by one of the follow-
ing conditions:

• The accessed address does not exist
• A data error is detected

As defined in the OEA, machine check interrupts are enabled when MSRME = 1. If
MSRME = 0 and a machine check interrupt indication is received, the processor enters
the checkstop state. The behavior of the core in checkstop state is dependent on the
working mode as defined in 21.4.1.1 Debug Mode Enable vs. Debug Mode Disable.
When the processor is in debug mode enable, it enters the debug mode instead of the
checkstop state. When in debug mode disable, instruction processing is suspended
and cannot be restarted without resetting the core.

An indication is sent to the SIU which may generate an automatic reset in this condi-
tion. Refer to SECTION 7 RESET for more details. If the machine check interrupt is
enabled, MSRME = 1, it is taken. If SRR1 Bit 30 = 1, the interrupt is recoverable and the
following registers are set.

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that the proces-
sor attempts to execute next if no interrupt conditions are
present

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-45

For load/store bus cases, these registers are also set:

Execution resumes at offset 0x00200 from the base address indicated by MSRIP.

3.15.4.3 Data Storage Interrupt

A data storage interrupt is never generated by the hardware. The software may branch
to this location as a result of implementation-specific data storage protection error
interrupt.

3.15.4.4 Instruction Storage Interrupt

An instruction storage interrupt is never generated by the hardware. The software may
branch to this location as a result of an implementation-specific instruction storage pro-
tection error interrupt.

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that caused the
interrupt

Save/Restore Register 1 (SRR1)

1
Set to 1 for instruction fetch-related errors and 0 for load/
store-related errors

2:4 Set to 0

10:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0

Register Name Bits Description

Data/Storage Interrupt Status
Register (DSISR)

0:14 Set to 0

15:16
Set to bits 29:30 of the instruction if X-form and to 0b00 if D-
form

17 Set to Bit 25 of the instruction if X-form and to Bit 5 if D-form

18:21
Set to bits 21:24 of the instruction if X-form and to bits 1:4 if
D-form

22:31 Set to bits 6:15 of the instruction

Data Address Register (DAR)
Set to the effective address of the data access that caused
the interrupt
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-46

3.15.4.5 Alignment Interrupt

An alignment exception occurs as a result of one of the following conditions:

• The operand of a floating-point load or store is not word aligned.
• The operand of load/store multiple is not word aligned.
• The operand of lwarx or stwcx is not word aligned.
• The operand of load/store individual scalar instruction is not naturally aligned

when MSRLE = 1.
• An attempt to execute multiple/string instruction is made when MSRLE = 1.

3.15.4.6 Floating-Point Enabled Exception Type Program Interrupt

A floating-point enabled exception type program interrupt is generated if ((MSRFE0 |
MSRFE1) &FPSCRFEX) is set as a result of move to FPSCR instruction, move to MSR
instruction or the execution of the rfi instruction. A floating-point enabled exception
type program interrupt is not generated by floating-point arithmetic instructions.
Instead if ((MSRFE0 | MSRFE1) &FPSCRFEX) is set, the floating-point assist interrupt
is generated.

3.15.4.7 Illegal Instruction Type Program Interrupt

An illegal instruction type program interrupt is not generated by the core. An implemen-
tation dependent software emulation interrupt is generated instead.

3.15.4.8 Privileged Instruction Type Program interrupt

A privileged instruction type program interrupt is generated for an on-core valid SPR
field or any SPR encoded as an external to the core special register if SPR0 = 1 and
MSRPR = 1, as well as an attempt to execute privileged instruction when MSRPR = 1.

3.15.4.9 Floating-Point Unavailable Interrupt

The floating-point unavailable interrupt is generated by the MPC555 core as defined
in the OEA.

3.15.4.10 Trace Interrupt

A trace interrupt occurs if MSRSE = 1 and any instruction except rfi is successfully com-
pleted or MSRBE = 1 and a branch is completed. Notice that the trace interrupt does
not occur after an instruction that caused an interrupt (for instance, sc). A monitor/
debugger software must change the vectors of other possible interrupt addresses to
single-step such instructions. If this is unacceptable, other debug features can be
used. Refer to SECTION 21 DEVELOPMENT SUPPORT for more information. The
following registers are set:
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-47

Execution resumes at offset 0x00D00 from the base address indicated by MSRIP.

3.15.4.11 Floating-Point Assist Interrupt

A floating-point assist interrupt occurs in the following cases:

• When a floating-point exception condition is detected, the corresponding floating-
point enable bit in the FPSCR (floating-point status and control register) is set (ex-
ception enabled) and ((MSRFE0 | MSRFE1) = 1). Note that when ((MSRFE0 |
MSRFE1) and FPSCRFEX) is set as a result of move to FPSCR, move to MSR or
rfi, the floating-point assist interrupt handler is not invoked.

• When an intermediate result is detected and the floating-point underflow excep-
tion is disabled (FPSCRUE = 0)

• In some cases when at least one of the source operands is denormalized.

The following registers are set:

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction following the ex-
ecuted instruction

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that caused the
interrupt

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other Loaded from bits 16:31 of MSR1

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-48

Execution resumes at offset 0x00E00 from the base address indicated by MSRIP.

3.15.4.12 Implementation-Dependent Software Emulation Interrupt

An implementation-dependent software emulation interrupt occurs in the following
instances:

• When executing any non-implemented instruction. This includes all illegal and un-
implemented optional instructions and all floating-point instructions.

• When executing a mtspr or mfspr that specifies on-core non-implemented reg-
ister, regardless of SPR0.

• When executing a mtspr or mfspr that specifies off-core non-implemented reg-
ister and SPR0 = 0 or MSRPR = 0 (no program interrupt condition).

• Program interrupt is generated if ((MSRFE0 | MSRFE1) and FPSCRFEX) is set as
a result of move to FPSCR instruction, move to MSR instruction, or the execution
of the rfi instruction.

• Floating-point enabled exception type program interrupt is not generated by float-
ing-point arithmetic instructions, instead if ((MSRFE0 | MSRFE1) &FPSCRFEX) is
set, the floating-point assist interrupt is generated.

In addition, the following registers are set:

Execution resumes at offset 0x01000 from the base address indicated by MSRIP.

3.15.4.13 Implementation-Specific Instruction Storage Protection Error Interrupt

The implementation-specific instruction storage protection error interrupt occurs in the
following cases:

NOTES:
1. In the current implementation bit 30 of the SRR1 is never cleared other then by loading zero

value from MSR RI.

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that caused the
interrupt

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-49

• The fetch access violates storage protection.
• The fetch access is to guarded storage and MSRIR = 1.

The following registers are set:

Execution resumes at offset 0x01300 from the base address indicated by MSRIP.

3.15.4.14 Implementation-Specific Data Storage Protection Error Interrupt

The implementation-specific data storage protection error interrupt occurs in the fol-
lowing case:

• The access violates the storage protection.

The following registers are set:

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that caused the
interrupt

Save/Restore Register 1 (SRR1)

1 Set to 0

2 Set to 0

3
Set to 1 if the fetch access was to a guarded storage when
MSRIR = 1, otherwise set to 0

4
Set to 1 if the storage access is not permitted by the protec-
tion mechanism; otherwise set to 0

10 Set to 0

11:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-50

Execution resumes at offset 0x01400 from the base address indicated by MSRIP.

3.15.4.15 Implementation-Specific Debug Interrupts

Implementation-specific debug interrupts occur in the following cases:

• When there is an internal breakpoint match (for more details, refer to SECTION
21 DEVELOPMENT SUPPORT.

• When a peripheral breakpoint request is asserted to the MPC555 core.
• When the development port request is asserted to the MPC555 core. Refer to

SECTION 21 DEVELOPMENT SUPPORT for details on how to generate the de-
velopment port-interrupt request.

The following registers are set:

Register Name Bits Description

Save/Restore Register 0 (SRR0)
Set to the effective address of the instruction that caused the
interrupt

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other
Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0

Data/Storage Interrupt Status
Register (DSISR)

0 Set to 0

1 Set to 0

2:3 Set to 0

4
Set to 1 if the storage access is not permitted by the protec-
tion mechanism. Otherwise set to 0

5 Set to 0

6 Set to 1 for a store operation and to 0 for a load operation

7:31 Set to 0

Data Address Register (DAR)
Set to the effective address of the data access that caused
the interrupt
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-51

For L-bus breakpoint instances, these registers are set to:

Execution resumes at offset from the base address indicated by MSRIP as follows:

• 0x01D00 – For instruction breakpoint match
• 0x01C00 – For data breakpoint match
• 0x01E00 – For development port maskable request or a peripheral breakpoint
• 0x01F00 – For development port non-maskable request

3.15.4.16 Partially Executed Instructions

In general, the architecture permits instructions to be partially executed when an align-
ment or data storage interrupt occurs. In the core, instructions are not executed at all
if an alignment interrupt condition is detected and data storage interrupt is never gen-
erated by the hardware. In the MPC555, the instruction can be partially executed only
in the case of the load/store instructions that cause multiple access to the memory
subsystem. These instructions are:

Register Name Bits Description

Save/Restore Register 0 (SRR0)

For I-breakpoints, set to the effective address of the instruc-
tion that caused the interrupt. For L-breakpoint, set to the ef-
fective address of the instruction following the instruction that
caused the interrupt. For development port maskable request
or a peripheral breakpoint, set to the effective address of the
instruction that the processor would have executed next if no
interrupt conditions were present. If the development port re-
quest is asserted at reset, the value of SRR0 is undefined.

Save/Restore Register 1 (SRR1)

1:4 Set to 0

10:15 Set to 0

Other

Loaded from bits 16:31 of MSR. In the current implementa-
tion, Bit 30 of the SRR1 is never cleared, except by loading a
zero value from MSRRI.
If the development port request is asserted at reset, the value
of SRR1 is undefined.

Machine State Register (MSR)

IP No change

ME No change

LE Bit is copied from ILE

Other Set to 0

Register Name Bits Description

BAR
Set to the effective address of the data access as computed
by the instruction that caused the interrupt

DAR and DSISR Do not change
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-52

• Multiple/string instructions
• Unaligned load/store instructions

In the last case, the store instruction can be partially completed if one of the accesses
(except the first one) causes the data storage protection error. The implementation-
specific data storage protection interrupt is taken in this case. For the update forms,
the update register (RA) is not altered.

3.15.5 Timer Facilities

Descriptions of the timebase and decrementer registers can be found in SECTION 6
SYSTEM CONFIGURATION AND PROTECTION and in SECTION 8 CLOCKS AND
POWER CONTROL.

3.15.6 Optional Facilities and Instructions

Any other OEA optional facilities and instructions (except those that are discussed
here) are not implemented by the MPC555 hardware. Attempting to execute any of
these instructions causes an implementation dependent software emulation interrupt
to be taken.
MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-53

MPC555 CENTRAL PROCESSING UNIT MOTOROLA

USER’S MANUAL Revised 15 September 1999 3-54

	SECTION 3 CENTRAL PROCESSING UNIT
	3.1 RCPU Features
	3.2 RCPU Block Diagram
	3.3 Instruction Sequencer
	3.4 Independent Execution Units
	3.4.1 Branch Processing Unit (BPU)
	3.4.2 Integer Unit (IU)
	3.4.3 Load/Store Unit (LSU)
	3.4.4 Floating-Point Unit (FPU)

	3.5 Levels of the PowerPC Architecture
	3.6 RCPU Programming Model
	3.7 PowerPC UISA Register Set
	3.7.1 General-Purpose Registers (GPRs)
	3.7.2 Floating-Point Registers (FPRs)
	3.7.3 Floating-Point Status and Control Register (�FPSCR)
	3.7.4 Condition Register (CR)
	3.7.4.1 Condition Register CR0 Field Definition
	3.7.4.2 Condition Register CR1 Field Definition
	3.7.4.3 Condition Register CRn Field — Compare Instruction

	3.7.5 Integer Exception Register (XER)
	3.7.6 Link Register (LR)
	3.7.7 Count Register (CTR)

	3.8 PowerPC VEA Register Set — Time Base
	3.9 PowerPC OEA Register Set
	3.9.1 Machine State Register (MSR)
	3.9.2 DAE/Source Instruction Service Register (DSISR)
	3.9.3 Data Address Register (DAR)
	3.9.4 Time Base Facility (TB) — OEA
	3.9.5 Decrementer Register (DEC)
	3.9.6 Machine Status Save/Restore Register 0 (SRR0)
	3.9.7 Machine Status Save/Restore Register 1 (SRR1)
	3.9.8 General SPRs (SPRG0–SPRG3)
	3.9.9 Processor Version Register (PVR)
	3.9.10 Implementation-Specific SPRs
	3.9.10.1 EIE, EID, and NRI Special-Purpose Registers
	3.9.10.2 Floating-Point Exception Cause Register (FPECR)
	3.9.10.3 Additional Implementation-Specific Registers

	3.10 Instruction Set
	3.10.1 Instruction Set Summary
	3.10.2 Recommended Simplified Mnemonics
	3.10.3 Calculating Effective Addresses

	3.11 Exception Model
	3.11.1 Exception Classes
	3.11.2 Ordered Exceptions
	3.11.3 Unordered Exceptions
	3.11.4 Precise Exceptions
	3.11.5 Exception Vector Table

	3.12 Instruction Timing
	3.13 PowerPC User Instruction Set Architecture (UISA)
	3.13.1 Computation Modes
	3.13.2 Reserved Fields
	3.13.3 Classes of Instructions
	3.13.4 Exceptions
	3.13.5 The Branch Processor
	3.13.6 Instruction Fetching
	3.13.7 Branch Instructions
	3.13.7.1 Invalid Branch Instruction Forms
	3.13.7.2 Branch Prediction

	3.13.8 The Fixed-Point Processor
	3.13.8.1 Fixed-Point Instructions

	3.13.9 Floating-Point Processor
	3.13.9.1 General
	3.13.9.2 Optional instructions

	3.13.10 Load/Store Processor
	3.13.10.1 Fixed-Point Load With Update and Store With Update Instructions
	3.13.10.2 Fixed-Point Load and Store Multiple Instructions
	3.13.10.3 Fixed-Point Load String Instructions
	3.13.10.4 Storage Synchronization Instructions
	3.13.10.5 Floating-Point Load and Store With Update Instructions
	3.13.10.6 Floating-Point Load Single Instructions
	3.13.10.7 Floating-Point Store Single Instructions
	3.13.10.8 Optional Instructions
	3.13.10.9 Little-Endian Byte Ordering

	3.14 PowerPC Virtual Environment Architecture (VEA)
	3.14.1 Atomic Update Primitives
	3.14.2 Effect of Operand Placement on Performance
	3.14.3 Storage Control Instructions
	3.14.4 Instruction Synchronize (isync) Instruction
	3.14.4.1 Enforce In-Order Execution of I/O (eieio) Instruction

	3.14.5 Timebase

	3.15 POWERPC Operating Environment Architecture (OEA)
	3.15.1 Branch Processor Registers
	3.15.1.1 Machine State Register (MSR)
	3.15.1.2 Branch Processors Instructions

	3.15.2 Fixed-Point Processor
	3.15.2.1 Special Purpose Registers

	3.15.3 Storage Control Instructions
	3.15.4 Interrupts
	3.15.4.1 System Reset Interrupt
	3.15.4.2 Machine Check Interrupt
	3.15.4.3 Data Storage Interrupt
	3.15.4.4 Instruction Storage Interrupt
	3.15.4.5 Alignment Interrupt
	3.15.4.6 Floating-Point Enabled Exception Type Program Interrupt
	3.15.4.7 Illegal Instruction Type Program Interrupt
	3.15.4.8 Privileged Instruction Type Program interrupt
	3.15.4.9 Floating-Point Unavailable Interrupt
	3.15.4.10 Trace Interrupt
	3.15.4.11 Floating-Point Assist Interrupt
	3.15.4.12 Implementation-Dependent Software Emulation Interrupt
	3.15.4.13 Implementation-Specific Instruction Storage Protection Error Interrupt
	3.15.4.14 Implementation-Specific Data Storage Protection Error Interrupt
	3.15.4.15 Implementation-Specific Debug Interrupts
	3.15.4.16 Partially Executed Instructions

	3.15.5 Timer Facilities
	3.15.6 Optional Facilities and Instructions

