
w w w. ra d i sy s . co m
Revision A • July 2006

Getting Started with Hawk™

Version 2.5

July 2006
Copyright ©2006 by RadiSys Corporation

All rights reserved.
EPC and RadiSys are registered trademarks of RadiSys Corporation. ASM, Brahma, DAI, DAQ, MultiPro, SAIB, Spirit, and ValuePro are
trademarks of RadiSys Corporation.
DAVID, MAUI, OS-9, OS-9000, and SoftStax are registered trademarks of RadiSys Corporation. FasTrak, Hawk, and UpLink are
trademarks of RadiSys Corporation.
† All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners.

Copyright and publication information

This manual reflects version 2.5 of Hawk.
Reproduction of this document, in part or whole, by any means,
electrical, mechanical, magnetic, optical, chemical, manual, or
otherwise is prohibited, without written permission from RadiSys
Microware Communications Software Division, Inc.

Disclaimer

The information contained herein is believed to be accurate as of
the date of publication. However, RadiSys Corporation will not be
liable for any damages including indirect or consequential, from
use of the OS-9 operating system, Microware-provided software,
or reliance on the accuracy of this documentation. The
information contained herein is subject to change without notice.

Reproduction notice

The software described in this document is intended to
be used on a single computer system. RadiSys
Corporation expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for
backup purposes. Distribution of this software, in part
or whole, to any other party or on any other system
may constitute copyright infringements and
misappropriation of trade secrets and confidential
processes which are the property of RadiSys
Corporation and/or other parties. Unauthorized
distribution of software may cause damages far in
excess of the value of the copies involved.

Getting Started with Hawk 3

Contents

Hawk Tools Overview.. 6.

Project Manager ... 6.

Project Spaces... 7.

Workspaces.. 7.

Editor ... 8.

Debugger .. 8.

Debugging in User- and System-State ... 8.

Profiler.. 9.

Ultra C/C++ Compiler .. 10.

The Example Applications .. 12.

Create and Modify a Hawk Project .. 12.

Create a Project Space and Project ... 12.

Creating a New Component for your Project ... 13.

More on Units.. 17.

Configure the Hawk Project ... 17.

Search Paths... 17.

Execution Search Path ... 18.

Source Options .. 18.

Build the Module ... 19.

Add a Dependency ... 22.

Adding the Sender Component... 23.

Preparing to do Application Debugging .. 26.

Configuring Debug Support for your Project ... 26.

Increasing the Timeouts ... 26.

Application-Level Debugging Using Hawk ... 27.

Setting Up the Debugger... 27.

Using the Debugger .. 28.

Create the Driver Project .. 32.

Add the Driver Components to the Project ... 32.

Configure the Driver Makefiles... 34.

Edit the makefile File .. 34.

Prepare the Target for Debugging ... 34.

Prepare Hawk for Debugging ... 35.

Attach to the System... 36.

Attach to the Module.. 36.

Overview .. 40.

OS-9 Makefiles .. 40.

Running Makefiles in Hawk... 40.

Makefile Example... 40.

Creating the Project.. 41.

Add Driver Components to the Project .. 42.

Contents

Getting Started with Hawk 4

Configure the Driver Makefiles .. 43.

Edit the Makefile File ... 44.

Debugging over a SLIP Connection... 46.

Configuring the Host System.. 46.

Install Null Modem ... 46.

Install RAS Device ... 47.

Dial-Up Networking .. 47.

Debugging over a SLIP Connection using Windows 2000... 48.

Stage One: Configuring the Target ... 48.

Stage Two: Configuring the Host System ... 49.

Install the Hawk Null Modem... 49.

Dial-Up Networking Setup .. 52.

Dial-Up Connection... 52.

Debugging a Subroutine Library ... 56.

5

1 Introduction to Hawk™

Hawk™ is the open Integrated Development Environment (IDE) for Microware's
OS-9® real-time operating system. The Hawk IDE environment can be custom-
tailored; you can add custom expert and productivity enhancement features by
taking advantage of the open application interface. In addition, the Hawk
development environment enables you to work in a seamless workspace integrating
the following functions and tools:

• Project Manager

• Editor

• Debugger

• Profiler

• Ultra C/C++ Compiler

This manual only contains information to help familiarize you with the Hawk
IDE and its uses. For more detailed information about Hawk, refer to the Using
Hawk manual.

Chapter 1: Introduction to Hawk™

Getting Started with Hawk 6

Hawk Tools Overview
The Hawk development environment, as shown in Figure 1-1, contains a set of
tools consisting of a project manager, source code editor, debugger, and Ultra C/C++
compiler.

Figure 1-1. Hawk Integrated Development Environment

Project Manager
The Project Manager window is located in the left portion of the Hawk IDE
environment. The Project Manager is responsible for the following tasks:

• organizing each software project within the project space

• identifying the dependencies between software components

• recording detailed build information

• controlling the build process

Project WindowStatus Bar

EditorMenu Bar

Chapter 1: Introduction to Hawk™

Getting Started with Hawk 7

The Project Manager organizes source files, makefiles, libraries, and additional
project files needed to build an application. Hawk saves your settings to a .PJT file
and an .MPJ file. The .MPJ file maintains the relationship between components and
units and the settings for the components and units. It also replaces the makefile
task so that when a build is requested, Hawk automatically performs the old make
utility task for you. The types of project files are summarized in Table 1-1.

Components and units are the entities that the Project Manager uses to form logical
associations between the various files it manages. A component is comparable to a
module, descriptor, or driver, and a unit is an individual file.

Project Spaces

Project spaces store sets of projects and allow multiple projects to be open at one
time. Before a project can be made, a project space has to be set up. Once one is
created, it will appear in the Project Manager as a file cabinet icon and will be given
a .psp extension.

Workspaces

A workspace maintains state information about a project. It differs from a project
in that it does not store the system-wide options normally stored in a configuration
file. In a sense, the workspace is like a Hawk state file that can be “swapped” in and
out as needed.

State files retain information about the windows and buffers opened during the last
Hawk session and the position in which those windows and buffers existed.
Workspaces are like mini-state files within projects. Each workspace retains a
separate set of window information. Other state information such as search
options, response histories, and bookmarks are stored as part of the project.

Table 1-1. Project File Types

.pjt file Maintains a list of all the files in a project and some
project settings for the Hawk environment

.mpj file Retains the structure and setting of the properties in a
Hawk project

.mpjBackup file Is a copy of the current .mpj file being saved

Only one project space can be open at a time.

Chapter 1: Introduction to Hawk™

Getting Started with Hawk 8

Editor
The Hawk Editor Window is located in the upper right portion of the Hawk IDE
environment, as displayed in Figure 1-1. It has the following features:

Debugger
Hawk can be used for debugging both applications and OS-9 system components.
Application processes typically run in user-state and OS-9 system components run
in system-state.

Debugging in User- and System-State

User-state application processes are not allowed by the kernel to interfere with the
operating system; thus, errant pointers and bad logic do not cause system crashes or
process failures. System-state is used by the components of OS-9, although if
necessary processes can be designed to run in system-state. The operating system,
drivers, device descriptors, and file managers operate in system-state. In this
environment, the code associated with the operating system and its subsystems has
complete access to the system.

Every OS-9 kernel has built-in debugging support, allowing the kernel to control
the process that is being debugged. As a result, the debugging process for user-state
applications is simplified. For both user- and system-state debugging, a client-server
model is used, in which the Windows host machine acts as the client and the OS-9
target machine acts as the server. To successfully perform debugging, the following
conditions must be met:

• You must have a stable TCP/IP connection between the Windows host machine
and the OS-9 target machine.

• OS-9 must have low-level network I/O or SoftStax® installed and properly
functioning.

• The debugging daemons (undpd or spfndpd) must be running.

• HTML viewer • DLL extensibility

• merge and difference • elided text (selective display)

• Help manager • IDE integration

• API assistance • button links

• syntax highlighting
(ChromaCode)

• build file support

If you do not have a fully functional TCP/IP connection established between
the Windows Host machine and the OS-9 target machine, please refer to
the board guide for your Microware OS-9 product.

Chapter 1: Introduction to Hawk™

Getting Started with Hawk 9

To assist in the debugging of your user and system-state code, the Hawk Debugger
contains a number of powerful features:

• source and assembly-level breakpoints

• display and change registers

• view locals

• watchpoints

• directly view and change memory

• stack back-tracing

• easy to use interface

• system and process level debugging

Profiler
The Hawk Profiler is used to examine the memory and CPU usage of processes
running on an OS-9 target. It can show overall system statistics or module specific
statistics, as shown in Figure 1-2.

Figure 1-2. The Profiler Main Window

You can also use the stand-alone version of the Debugger. This version
allows you to debug multiple processes or threads.

Chapter 1: Introduction to Hawk™

Getting Started with Hawk 10

Ultra C/C++ Compiler
The Ultra C/C++ compiler uses state-of-the-art optimization techniques to obtain
the maximum performance from your applications. While most compilers optimize
your application on a file by file basis, Ultra C/C++ can see and optimize your
application, along with its libraries.

Also available in Hawk is the Tools.h++ class library from Rogue Wave. This
internationalized C++ foundation class library provides you with 120 reusable
classes, including sets, bags, sorted collections, strings, linked lists, dates and times,
and extensible virtual streams for persistence.

11

2 Creating Hawk Projects

This chapter will teach you to create and modify a Hawk project. Before
proceeding, be sure you meet the following requirements:

• You have installed Microware OS-9 software onto your host system

• You have connected your target system to your host system

• You have created an OS-9 ROM image and transferred it to the target system

• You have booted your system to the mshell prompt ($)

• Your target hardware has networking capabilities

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 12

The Example Applications
This chapter uses the sploop example to illustrate the process of creating and
modifying a Hawk project. The sploop example consists of a sending application
and a receiving application that uses the SoftStax network emulation driver
(sploop) to send and receive a hello world message. Figure 2-1 outlines the sploop
example.

Figure 2-1. Modules Used in the Tutorial

The sploop example consists of the following modules:

• Two applications (ex1_snd, ex1_rcv) that will run as separate processes

• One device driver (sploop)

• Two descriptor modules (loopc0, loopc1)

The required modules are included in the Enhanced OS-9 software package.

Create and Modify a Hawk Project
This section describes creating and modifying a Hawk project. During this process,
you will complete the following tasks:

• Create a Project Space and Project

• Configure the Hawk Project

• Build the Module

• Add a Dependency

Create a Project Space and Project

Before a project can be built, a project space must be created to hold it. This section
describes how to create the project space and add a project to it.

sploop

ex1_rcv ex1_snd

Receiver Application Sender Application

Protocol Driver

User State

System State

Refer to Using SoftStax for more information about sploop.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 13

Step 1. From the Hawk window, select Project -> Project Space -> New. The Create a
New Project Space dialog box appears.

Step 2. From this dialog, enter the file name for your project space. For the purpose of this
tutorial, enter the following path:

<drive>:\mwos\PROJECTS\HAWK_TUTORIAL\hawk_tutorial.psp

Click OK. Hawk creates the PROJECTS and HAWK_TUTORIAL folders automatically,
along with a hawk_tutorial.psp file (the project space).

Step 3. Once you click the OK button, the Project Properties dialog box appears.

Figure 2-2. Project Properties dialog box

Step 4. Select the Add New Project to project space button (illustrated in the figure
above). The Add New Project to Project Space dialog box appears.

Step 5. Enter hawk_tutorial (the name of the project) in the Filename field. It is not
necessary to enter the full path because the current directory is correct.

Step 6. Click OK. The new project, hawk_tutorial, appears in the Project Properties list
box as part of the hawk_tutorial project space.

Step 7. Click OK to dismiss the Project Properties dialog box.

Creating a New Component for your Project

Once the project and project space have been created, you need to create a new
component. A component is a grouping of files with unique settings. Although not
all components create an output, most components build binary objects such as

New
Project
Button

Project
Properties
List Box

Note that the name hawk_tutorial can be used for both the project and the
project spaces because the extensions are different. (Projects end in .pjt and
project spaces end in .psp).

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 14

libraries, descriptors, or modules. The following table lists the valid component
types:

Step 1. To create a new component, select the New Component button on the right side of the
Project Manager window (illustrated in the figure below).

Figure 2-3. The New Component Button

Step 2. The Create New Component dialog box appears. Projects consists of multiple
components. For this example, begin with one component, the receiver process.
Type the following into the component dialog box:

Name: receiver

Description: receiver process for the sploop (example 1) sender/receiver
application

Chip: <Processor Name>

Type: User-State Program

Psect File: This text box can be left blank. The Ultra C/C++ compiler will use the
correct psect file for the executive option mode in use.

Type Output Builder
User State Module Module Ultra C/C++
System State Module Module Ultra C/C++
Collection n/a n/a
Descriptor Module Ultra C/C++ or Editmod
Driver Module Ultra C/C++
File Manager Module Ultra C/C++
I-Code Library *.i or *.il Ultra C/C++
O-Code Library *.l libgen

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 15

Step 3. Click Next>> to display the Units dialog box. Components consists of units, which
can be library, header, or source files.

Step 4. At the Look in menu item, browse to the following location:

<mwos>\SRC\SPF\EXAMPLES\EXAMPLE1

Step 5. Select the ex1_rcv.c file and add by clicking the Add Selected Unit(s) button (the
down arrow above the Added Units list box). The ex1_rcv.c full path list should
now appear in the Added Units list box.

Step 6. Leave the Generate Dependency Information check box selected and click the
Finish button. The Generating Dependencies dialog box appears while dependency
information is created.

When complete, the Components frame should have a folder called receiver, and
the Contents frame should contain a file called ex1_rcv.c (as illustrated in the
figure below).

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 16

Figure 2-4. Results of Generated Receiver Component

Step 7. Save the project by selecting Project -> Save.

If you select a different processor for a component, the component settings
override the project settings only for this component.
The component name is a module name by default. If the component name
contains a space, Hawk inserts an underline for the module name. Also, if you
have more than one component to enter, you must first create the project and
add more components later.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 17

More on Units

A unit is a single file which is added to a component. Since a unit is a file, it has an
extension that identifies its type. Hawk recognizes the following types of file
extensions:

Configure the Hawk Project

Search Paths

The next task is to configure your project to use correct search paths for libraries,
header files, and storing intermediate and executable modules. Hawk knows the
location of the default header files and libraries, but for the purpose of this tutorial,
proceed through the following steps to learn how to find these paths manually.

Step 1. Select the Project -> Properties menu item. The Properties window for
Hawk_tutorial is displayed. The General tab should be pre-configured with the
default chip that was selected when the project was created. If it is not, scroll
through the Chip drop-down menu and select the appropriate processor.

Step 2. Select the Folders tab. This tab enables you to add additional include files, libraries,
and the destination for intermediate and executable modules.

Figure 2-5. Properties Dialog

Extension Type Builder Viewer
*.c, *.cpp, *.cxx Ultra C++ Source File Ultra C++ text editor
*.r Relocatable object file (ROF) Ultra C++ rdump

*.i, *.il I-Code file or library Ultra C++ idump

*.l O-Code library Ultra C++ libgen

*.a Assembler Source File Ultra C++ text editor
*.des Descriptor File editmod text editor
*.mak Makefile (any type) OS9make text editor
*. OS-9 Module n/a ident

Enter the folder
location for the
intermediate
output for the
project.

Click on
the folder
icon to use
the
browser

Enter the folder
location for the
execution output
for the project.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 18

Under the Output Folders section, add the following intermediate path by selecting
the green plus sign, as illustrated in Figure 2-6. (Double or single-clicking will not
add the path to the list.)

<drive>:\mwos\SRC\SPF\EXAMPLES\EXAMPLE1

Step 3. Save your change by selecting the green check mark in the upper left corner of the
screen (illustrated in the Figure 2-5).

Execution Search Path

Complete the following steps in the Properties dialog to configure the Execution
search path.

Step 1. Under the Output Folders section, click the Browse icon to the right of the
Execution text box. The Select Folders dialog box appears.

Step 2. Select the PROJECTS folder on the left. The resulting path in the Add Folder text box
should now appear as: <drive>:\mwos\PROJECTS\HAWK_TUTORIAL

Step 3. Select the green plus sign (illustrated in the figure below) to add this path to the
Selected Folders List. (Double or single-clicking will not add the path to the list.)

Figure 2-6. Select Folders Dialog

Step 4. Click OK to close the Select Folders dialog box.

Step 5. Save your change by selecting the green check mark in the upper left corner of the
screen (illustrated in the Figure 2-5).

Source Options

This section continues from the steps performed in the previous section.

This section continues from the steps performed in the previous section.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 19

Complete the following steps in the Properties dialog to configure the source file
options in the Properties dialog box:

Step 1. Select the Source tab.

Step 2. Select either the C or C++ language.

Step 3. Specify how closely the Compiler should follow ANSI standards.

Step 4. Save your change by selecting the green check mark in the upper left corner of the
screen (illustrated in the Figure 2-5). Secect the Close button to dismiss the dialog.

Build the Module

Complete the following steps to build your Receiver module. This section describes
how to start the build and how to include a pre-compiled library.

Step 1. Under the Project menu, select Build.

A Build Complete dialog box appears and shows the progress of the build. It ends
this build by stating that there were errors. These errors are shown in the Build tab
window (refer to the figure below).

The linker states that there are many unresolved ite_xxx calls. The errors occur
because the receiver process uses the item.l library, which was not included
automatically. Hawk recognizes default OS-9 libraries and includes them
automatically, but it does not automatically resolve any calls to the networking or
graphics I/O system libraries.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 20

Figure 2-7. Build Results with Errors

Step 2. Click OK to dismiss the Build Complete dialog box.

Step 3. Right click on the Receiver folder in the Components frame and select Unit
Maintenance. The Unit Maintenance dialog appears.

Add
Existing
Units
button.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 21

Step 4. Click the Add Existing Units button (illustrated in the figure above). The Select
One or More Files to Add to Project dialog box appears.

Step 5. In the Files of type drop-down menu, select O-Code Files (*.o, *.l). From the
Look in box, browse to <mwos>\OS9000\<processor>\LIB

Step 6. Select the item.l file and click the Open button. You should now see the item.l file
included in the Unit Maintenance dialog box.

Step 7. Leave the Generate Dependency Information check box selected and click OK. The
item.l file should now be included in the Contents of ‘receiver’ pane next to the
ex1_rcv.c file (illustrated in the figure below).

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 22

Step 8. Rebuild the project by selecting Project -> Build. There is now one unresolved
error in your build. Proceed through the next section to resolve this error.

Add a Dependency

In the previous section, the build resulted in one unresolved error regarding the
sleep() function. The sleep() function resides in the sys_clib.l library. In this
case, sys_clib.l is included as a dependency instead of as a unit. All of the
RadiSys-provided objects without associated sources must be included this way.

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 23

Step 1. Click OK in the Build Complete dialog box to dismiss it.

Step 2. Select Project -> Properties.

Step 3. Select the Link tab.

Step 4. In the O-Code Libraries box, select the Browse button. The Library Selection dialog
appears. Select the Add Existing Units button as you did in the previous section,
and navigate to the following location:

mwos\OS9000\<processor>\LIB\sys_clib.l.

Step 5. Click on sys_clib.l and click Open to include sys_clib.l as an O-Code library.
Select OK to dismiss the Library Selection dialog.

Step 6. Click the green check mark button in the upper left hand corner of the Properties
dialog to save the O-Code library changes.

Step 7. Click on the Click Close to dismiss the Properties dialog.

Step 8. Rebuild the project again using Project -> Build. The build should complete
without errors.

Adding the Sender Component

Add the sender component to the Hawk project.

Step 1. Select the New Component button in the Hawk Project window (illustrated in Figure
2-3).

Step 2. Complete the fields in the Create New Component dialog for the sender process.

Name: sender

Description: sender process for the sploop (example 1) sender/receiver
application

Chip: <processor>

Type: User-State Program

Step 3. Click Next to display the Units dialog and add the ex1_snd.c and item.l files in
the same manner you added units to the receiver component in a previous section.

Step 4. Leave the Generate Dependency Information check box selected and select Finish.

Step 5. Rebuild the project by selecting Project -> Build.

You have now successfully built a project. The next step in this tutorial is to debug
the project. Refer to the next chapter for the basic steps involved in user-state
application debugging with Hawk.

• The ex1_snd.c file resides in the following location:
<drive>:\mwos\SRC\SPF\EXAMPLES\EXAMPLE1\

• The item.l file resides in the following location:
<drive>:\mwos\OS9000\<processor>\LIB\

Chapter 2: Creating Hawk Projects

Getting Started with Hawk 24

25

3 Hawk Application
Debugging

This chapter covers user-state debugging. The process model used by OS-9 consists
of two environments: user-state and system-state.

User-state is the execution environment for application processes. Generally, user-
state processes do not deal directly with the specific hardware configuration of the
system.

System-state is the environment in which OS-9 system calls and interrupt service
routines are executed. System-state routines often deal with the physical hardware
present on a system.

This chapter will cover debugging user-state applications.

Chapter 3: Hawk Application Debugging

Getting Started with Hawk 26

Preparing to do Application Debugging
Before you can do application debugging with Hawk. The following must be true:

• SoftStax is included into the bootfile

• The sploop protocol driver and descriptors are loaded onto the target

• Timeouts must be increased for the receiver and sender processes

• Source level debugging must be enabled in Hawk

Configuring Debug Support for your Project

Step 1. Select Project -> Properties to bring up the Properties dialog box.

Step 2. In the Source tab, select the Code Generation category. In the Debug Support field,
check the Source Level radio button to enable source level debugging.

Step 3. Click the green check mark button to save your changes, if necessary.

Step 4. Click the Close button to dismiss the Properties dialog.

Step 5. Save the project by selecting Project -> Save.

Increasing the Timeouts

For application debugging, you must increase the timeouts of sender and receiver,
by completing the following steps:

Step 1. Open the ex1_snd.c file from the sender component. Perform a search for the
following lines:

connect_npb.ntfy_timeout = 10;

fehangup_npb.ntfy_timeout = 10;

datavail_npb.ntfy_timeout = 10;

If you followed the board guide for your version of OS-9, you should already
have a ROM image with Softstax enabled. It you do not have SoftStax enabled,
you need to rebuild your OS-9 ROM image.

Check the
Source
Level
button for
the type of
debug
support
you want.

Chapter 3: Hawk Application Debugging

Getting Started with Hawk 27

On each of these lines, change the timeouts to 100.

Step 2. Now open the ex1_rcv.c file and perform a search for the following lines:

incall_npb.ntfy_timeout = 50;

fehangup_npb.ntfy_timeout = 10;

datavail_npb.ntfy_timeout = 10;

Change the timeouts in these lines to 100 as well.

Step 3. Save and close the files.

Step 4. Rebuild the project using Project -> Build.

Step 5. Save the project by selecting Project -> Save.

Application-Level Debugging Using Hawk
This section describes application-level debugging. Application-level debugging is
also known as user-state debugging.

Setting Up the Debugger

The procedure in this section assumes that your reference board is not running.

Step 1. Apply power to your reference board.

Step 2. Click Connect in the serial window. Use the default Com Port Options. The
command prompt displays once the board has booted.

Step 3. Type the following command in the serial window:

spfndpd <>>>/nil &

Step 4. The sploop example requires three modules loaded onto your system. The three
modules are the sploop protocol driver module, the loopc0 descriptor module, and
the loopc1 desciptor module.

You can load these modules in one of two ways: individually through Hawk, or by
adding them to a bootfile. For the purposes of this tutorial, you should load them
individually through Hawk.

Step 5. Select Target -> Load to open the Load Module dialog box.

Step 6. Click on the Browse button and navigate to the directory in which the driver and
descriptor modules reside. The directory can be found in the following location:

mwos\OS9000\<processor>\CMDS\BOOTOBJS\SPF

If the Serial window is not visible, do the following steps to open it:
1. Select Tools->Customize->Toolbars
2. In the Toolbar Customization dialog box, select Serial.
3. Select the Visible check box and click Close.

If you want to learn how to add your own modules to a bootfile see the
Configuration Wizard’s help file.

Chapter 3: Hawk Application Debugging

Getting Started with Hawk 28

Step 7. Select the loopc0 file and click Open.

Step 8. Click Load in the Load Module dialog. The module is loaded onto your reference
board.

Step 9. Repeat steps 5-8 for loopc1 and sploop.

Step 10. Load your newly created sender program by selecting Target -> Load. Browse to
the <drive>:\mwos\PROJECTS\HAWK_TUTORIAL folder. Click on the sender module in
the list box and click Open to select the sender program.

Step 11. Click Load to load the sender module on the target.

Step 12. Select Debug -> Connect on the top menu bar. The Connect dialog box appears.

Step 13. Click the Fork tab. The Connect dialog displays the target machine name (or IP
address) in the Target text box.

Step 14. In the Program box, browse to the receiver module in the <MWOS>\PROJECTS folder
and click Open.

Step 15. Click OK. Follow the prompts to select ex1_rcv.c. ex1_rcv.c is at
mwos\SRC\SPF\EXAMPLES\EXAMPLE1

Step 16. Click Open to select ex1_rcv.c source file.

Using the Debugger

The next task is to step through the code. At this point the ex1_rcv.c source code is
displayed in the Source Code window with a yellow-outlined arrow pointing to the
main() line. Also, the Debug toolbar is displayed. Complete the following steps to
use the debugger.

Figure 3-1. Debug Toolbar

Step 1. Click the Step source button to scroll through the code. The output of receiver
goes to the Process I/O window. The Process I/O window appears when the process
creates output.

Exit Debugger

Stop Process

Refork Process

Run

Animate

Next Source

Step Assembly

Run to Cursor

Step Source

Return from Function

Next Assembly

As you scroll through the code notice a large while() loop. The receiver sleeps
until it gets a signal. It then wakes up and checks for incoming calls. If there is
an incoming call, it reads the data, prints what it gets, then returns Message
Received to the sender.

Chapter 3: Hawk Application Debugging

Getting Started with Hawk 29

Step 2. Next you will need to set a breakpoint at the line that contains the
if (incall_flag) statement. To do this, complete the following steps:

1. Open the Breakpoint window by selecting the Toggle Breakpoints
Visibility button on the CPU Windows toolbar (illustrated in the figure
below).

Figure 3-2. CPU Windows Toolbar

1. Right-click in the Breakpoint window and select Insert from the pop-up
menu. The Add Breakpoint window appears.

2. From the Add Breakpoint window, set the breakpoint type to Source.

3. Select the file selector button the right of the File text box, and navigate to
the source file you are debugging. In this case the source file is ex1_rcv.c
and is located in mwos\SRC\SPF\EXAMPLES\EXAMPLE1.

4. Using your mouse, highlight the start of the line you want to set a
breakpoint on, then right-click on the highlight and select Toggle
Breakpoint from the menu.

5. Click OK. The dialog box closes and the breakpoint is set on the line specified
as indicated with a red dot.

Step 3. Select the Run button, indicated by a green arrow on the Debug toolbar, to allow the
Receiver to free-run. In looking through the source code, you will notice that the
receiver application sleeps indefinitely until a signal wakes the process.

Step 4. Type Sender in the serial window. A yellow arrow should appear to the right of the
red ball where you set the breakpoint.

Step 5. Exit the Debugger by selecting Debug -> Exit Debugger from the main window.

You have now completed the basics of application debugging using Hawk.

Toggle Breakpoint Visibility

If you cannot see line numbers in your code, select Customize -> Views from
the Hawk menu. On the General tab, select the View Line Numbers check
box.

To add breakpoints to your code more quickly, simply highlight the line on
which you want to set a breakpoint, then right-click on the highlight and select
Toggle Breakpoint from the pop-up menu.

If this option is not available or the Hawk interface appears locked, perform a
telnet command to the target and terminate the receiver process by typing
procs. From here, determine the process ID of the receiver and type kill
<number>.

Chapter 3: Hawk Application Debugging

Getting Started with Hawk 30

31

4 Hawk System-State
Debugging

This section describes debugging system-state modules. As mentioned earlier,
system-state debugging is needed only for device driver or other hardware
dependent code. The example we will use in this section will revolve around
debugging a RAM disk driver. During this debugging process, you will complete the
following tasks:

• Create the Driver Project

• Prepare the Target for Debugging

• Attach to the System

• Attach to the Module

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 32

Create the Driver Project
The first task is to create a new project space and project to hold the driver. The
process is very similar to building an application module. It is also possible to add
driver projects to application projects, but it is not necessary for the current
example.

Step 1. From the Hawk window, select Project -> Project Space -> New. The Create a
New Project Space dialog box appears.

Step 2. In the Create a New Project Space dialog box, enter the file name for your project
space. For this tutorial, enter the following path:

<drive>:\mwos\PROJECTS\HAWK_TUTORIAL\sys_state_tutorial

Step 3. Click OK. Hawk creates a project space file called sys_state_tutorial.psp, and the
Create a New Project Space dialog box is replaced by the Project Properties dialog
box.

Figure 4-1. Project Properties dialog box

Step 4. Click on the New Project button. The Add New Project to Project Space dialog
box appears.

Step 5. Enter sys_state_tutorial (the name of the project) in the Filename field.

Step 6. Click OK. The new project, sys_state_tutorial appears in the Project Properties list
box as part of the hawk_tutorial project space.

Add the Driver Components to the Project
Once the project space and project have been created, the driver components need
to be added to the project.

New
Project
button

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 33

Step 1. Click on the New Component button on the right side of the Project Manager
window.

Figure 4-2. New Component Button

Step 2. In the component window, enter the following information:

Name: ram

Description: RAM disk device driver

Chip: <Processor Name>

Type: Driver (the psect will automatically change to drvstart.r.)

Step 3. Click Next>> . The Units window appears.

Step 4. At the Look in menu item, browse to the following location:

<mwos>\OS9000\SRC\IO\RBF\DRVR\RAMDRVR

Step 5. Select the files below and add them to the project by clicking the Add Selected
Unit(s) button (the down arrow above the Added Units list box).

drvrstat.c

init.c

main.c

misc.c

move.c

parity.c

read.c

stat.c

term.c

write.c

Step 6. Next, change the Files of Type box to read Header Files (*.h, *.hpp) and add the
following files:

prototyp.h

ram.h

Step 7. Change the Files of Type box again to read All Files and add the following file:

makefile

Step 8. De-select the Generate Dependency Information check box. Hawk should not
generate dependencies at this point because the existing makefiles are going to be
used to generate the driver modules.

Step 9. Click Finish. A new ram component appears in the project window.

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 34

Step 10. Save the project by selecting Project -> Save.

Configure the Driver Makefiles
The next task is to configure the makefile to properly build the debugging version
of the RAM disk driver. Complete the following steps:

Step 1. Right click on the makefile file and select Properties from the pop-up menu.

Step 2. Select the Make tab and configure the menu as follows:

Make: os9make -f%b%e

Forced Make: os9make -f%b%e clean all

Step 3. Click on the green check mark button in the upper left corner to save the changes.

Step 4. Click Close to dismiss the Properties window.

Edit the makefile File
The next task is to edit the makefile file. Complete the following steps:

Step 1. Right-click on the makefile file in the Component window and select Open in the
pop-up window. The file appears in the Document window.

Step 2. At the line DEBUG = #-g, remove the comment character “#” in front of the -g
option. The line should now appear as follows:

DEBUG = -g

The -g option causes the Compiler to create a ram.dbg file that provides the symbol
information map for source level debugging of device drivers.

Step 3. Save the file.

Step 4. Right click on the makefile file and select Rebuild from the pop-up menu. The
debugging version of the ram driver is placed in the following directory:

mwos\OS9000\<PROCESSOR>\CMDS\BOOTOBJS\ram

Prepare the Target for Debugging
Before this example can be performed, the OS-9 bootfile image must have certain
services added and other services disabled.

Step 1. Open the Configuration Wizard and perform the following tasks:

• Enable the RAM Disk
(Configure -> Bootfile -> Disk Configuration -> Ram Disk tab)

• Disable SoftStax
(Configure -> Bootfile -> Network Configuration -> SoftStax Setup tab)

Do not choose the component build by right clicking on the component to get
the contextual menu. Be sure to build by clicking on the file. This will invoke the
non-Hawk makefile.

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 35

• Enable Remote Ethernet Debugging
(Configure -> Coreboot -> Main Configuration -> Debugger tab)

• Set your Ethernet IP address
(Configure -> Coreboot -> Main Configuration -> Ethernet tab)

• Make sure that the User-State Debugging option is checked in the Master
Builder window (to load undpd).

Step 2. Build the bootfile. For more information on bootfile image customization or saving
your image, refer to your OS-9 for <target> Board Guide.

Step 3. Reboot your target. If you were debugging an application using the low-level
debugger, you would run the undpd daemon at this point with the command line
“undpd <>>>/nil &”. Since we are debugging system-state code, we do not need to
run undpd.

Prepare Hawk for Debugging
Perform the following tasks to set up the Hawk IDE for debugging.

Step 1. Select Debug -> Options.

Step 2. In the Options window, select the Folders tab. Boxes for inputting the source and
object code search folder locations are displayed.

Step 3. Select Browse button next to the Source Code area. This displays the Select Folders
window (shown in the figure below).

Figure 4-3. Select Folders Dialog

Step 4. From this window, delete all of the currently selected folders, then browse to the
following path and add it to the list by clicking on the green plus sign in the upper
right corner).

mwos\OS9000\SRC\IO\RBF\DRVR\RAMDRVR

Step 5. Click OK.

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 36

Step 6. Now select the Browse button for the Object Code area. The Select Folders dialog
appears again.

Step 7. From this window, delete all of the currently selected folders, then browse to the
following path and add it to the list by clicking on the green plus sign in the upper
right corner).

mwos\OS9000\<PROCESSOR>\CMDS\BOOTOBJS

Step 8. Select OK.

Step 9. Select OK once again to dismiss the Options dialog.

Attach to the System
The next task is to attach the debugger to the system. Complete the following steps:

Step 1. In the serial window, type break. This stops the target and allows you to set
breakpoints in the system code.

Step 2. Return to the Hawk interface and select Debug -> Connect from the main menu.

Step 3. At the Connect window, select the Attach tab. Make sure the System type is
highlighted.

Step 4. If it is not already there, enter your target’s name in the Target field.

Step 5. Click OK. After a few minutes, the debugging environment appears.

Attach to the Module
The next task is to attach to the module you will test. Complete the following steps:

Step 1. Select Debug -> Process -> Attach Module to Current and highlight Module in the
Type box.

Step 2. Type ram in the Module box.

Step 3. Click OK.

Step 4. Select Debug -> View -> Browse Symbol. This selection displays the symbol browser
window. It should have the ram module icon and name in the window.

Step 5. Expand the ram icon and select the read.c file.

Step 6. Add a breakpoint in the read.c file. Breakpoints are set in the Breakpoints window.

Step 7. Click on the Toggle Breakpoints Visibility button on the Datawindows Toolbar
to open the Breakpoint window.

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 37

Figure 4-4. CPU Windows Toolbar

Step 8. Right click in the Breakpoint window and select Insert from the contextual menu.
The Add Breakpoint window appears.

Step 9. Leave the Breakpoint Type set to Source.

Step 10. Click on the file selector button to the right of the File text box and navigate to the
source file being debugged. In this case, the source file is read.c, which is located in
mwos\OS9000\SRC\IO\RBF\DRVR\RAMDRVR.

Step 11. Enter the line number where you want to place your breakpoint into the Line # spin
box.

Step 12. Click OK. The dialog box closes and the breakpoint is set on the line specified as
indicated with a red dot.

Step 13. Minimize the Symbol Browser window.

Step 14. Select the green arrow on the debugging bar to start the system. Once the green
arrow is selected, the serial console should print out ***Warning*** - breakpoints
halt timesharing.

Step 15. Type dir /r0 and you should see the breakpoint you set in the debugger window.

The system will halt and you can now step through the RAM driver source. As soon
as you finish the step through process, the system will resume and you can either
debug the driver further or stop debugging by selecting Debug -> Stop.

To
gg

le
Asse

m
bl

y

To
gg

le
W

at
ch

To
gg

le
Call

 St
ac

k

To
gg

le
M

em
or

y

To
gg

le
M

M
U R

eg
ist

er
s

To
gg

le
Exc

ep
tio

ns

To
gg

le
“S

pe
cia

l”
 R

eg
ist

er
s

To
gg

le
M

PU
 R

eg
ist

er
s

To
gg

le
FP

U R
eg

ist
er

s

To
gg

le
Bre

ak
po

in
ts

To
gg

le
Loc

als

To
gg

le
Pr

oc
es

s I
/O

To
gg

le
 C

om
m

an
d

W
in

do
w

To
gg

le
Sy

m
bo

l B
ro

wse
r

Once you disconnect from the Debugger, you will need to reset the system
before you can reconnect.

Chapter 4: Hawk System-State Debugging

Getting Started with Hawk 38

39

5 Using Makefiles

This chapter describes building projects that run pre-existing makefiles. The
following sections are included:

• Overview

• Running Makefiles in Hawk

• Makefile Example

For OS-9 SDK and Board-Level Solution Users:
The example used in this chapter creates a system-state module. If you are
using the OS-9 SDK or Board Level Solution, you can follow these steps, but will
have to use one of the user-state demo applications instead of the system-state
example. For example, one of the MAUI® demos may be used for the project
instead of the RAM disk driver.

Chapter 5: Using Makefiles

Getting Started with Hawk 40

Overview
Makefiles can be run very easily through Hawk. The RAM disk driver example in
Chapter 4: System-State Debugging illustrates using a makefile in a Hawk project.
This example is re-examined in this chapter with a different emphasis. Where the
emphasis in Chapter 4 is on system-state debugging, this chapter will focus on the
relationship between Hawk and the makefile.

OS-9 Makefiles

Many of the components of OS-9 are built using makefiles. OS-9 makefiles reside
within the same directory as the component’s source files and are either called
makefile or identified with a .mak extension.

These makefiles set up a component’s build by defining such items as the source
files, the header files, and any library files. Usually, makefiles include other
makefiles which control compiler and linker settings that are common to a number
of components. Everything is defined in the current makefile or in one of the
makefiles or templates referenced by the main makefiles.

Running Makefiles in Hawk
The following steps illustrate how to run makefile-built components within Hawk:

Step 16. Create a new project space and project.

Step 17. Add the source files, header files, and makefiles to the project in the Units dialog
box.

Step 18. Deselect the Generate Dependency check box in the Units dialog box.

Step 19. Make sure Hawk is configured to run OS-9 make correctly. This is determined by
right-clicking on the makefile icon, selecting properties, and selecting the make tab.

Step 20. Set any command line switch in the makefile as needed. For example, the RAM disk
makefile has a macro called DEBUG, which is defined if the -g is not commented
out. This creates a debug version of the driver.

Step 21. Invoke the makefile by right clicking on it and selecting Build. Selecting Rebuild
performs a forced make.

Makefile Example
This example repeats the system-state debugging example from Chapter 4 with an
emphasis on building the project and the relationship between Hawk and the
makefile.

It is important to remember that the makefile will control the build process and
information entered into Hawk may not always be used. In this case, the Hawk
project is mainly a mechanism for organizing the component’s files. The instances
when the information entered in Hawk dialog boxes are not used will be noted at
relevant points during the following procedures.

Chapter 5: Using Makefiles

Getting Started with Hawk 41

Creating the Project

The process of creating the project space and project is not affected by the makefile.
Therefore, none of the information in the dialog boxes in this section is overridden
by the makefile.

Step 1. From the Hawk window, select Project -> Project Space -> New. The Create a
New Project Space dialog box appears.

Figure 5-1. Create a New Project Space

Step 2. In the Create a New Project Space dialog, enter the file name for your project space.
For this example, enter the following path:

MWOS\PROJECTS\RAM_disk_project_space\RAM_Project.psp

Step 3. Click OK. Hawk creates a project space file called RAM_Project.psp, and the Create a
New Project Space dialog box is replaced by the Project Properties dialog.

Figure 5-2. Project Properties dialog

Chapter 5: Using Makefiles

Getting Started with Hawk 42

Step 4. Click the New Project button. The Add New Project to Project Space dialog
appears.

Step 5. Enter RAM_Driver (the name of the project) in the Filename field.

Step 6. Click OK. The new project, RAM_Driver appears in the Project Properties list box as
part of the RAM_Project project space. Click OK to close the Project Properties
window.

Add Driver Components to the Project

Once the project space and project have been created, the driver components need
to be added to the project. The makefile will override some of Hawk settings in this
section. The overridden settings are identified in the appropriate steps. The
following procedure describes how to add the driver components to the project.

Step 1. Select the New Component button on the right side of the Project Manager window
(as illustrated in Figure 5-3):

Figure 5-3. New Component button

Step 2. In the Create New Component window, enter the following information.

Name: ram_disk
Description: RAM disk device driver
Chip: <Processor Name>
Type: Driver (the psect will automatically change to drvstart.r)

Step 3. Click Next. The Units window appears. At the Look in menu item, browse to the
following location:

MWOS\OS9000\SRC\IO\RBF\DRVR\RAMDRVR

The Chip and Type values are overridden by the makefile.

Do not move the source files, header files, or makefiles from their directory.
These makefiles contain path information that would need to be updated if any
related files are moved.

Chapter 5: Using Makefiles

Getting Started with Hawk 43

Step 4. Select the following files and add them to the project by clicking the down arrow
above the Added Units block.

drvrstat.c init.c

main.c misc.c

move.c parity.c

read.c stat.c

term.c write.c

Step 5. Change the Files of Type box to read Header Files (*.h, *.hpp) and add the
following files:

prototyp.h
ram.h

Step 6. Change the Files of Type box to All and add the following file:

makefile
All of the files needed to build the driver are now included in the project.

Step 7. De-select the Generate Dependency Information check box. Hawk should not
generate dependencies at this time because the makefile contains dependency
information.

Step 8. Click Finish. A new component named ram_disk appears in the project window.
Save the project by selecting Project -> Save.

Configure the Driver Makefiles

Complete the following steps to verify that Hawk is set to run os9make properly:

Step 1. Right-click on makefile and select Properties.

Step 2. Select the Make tab and configure the menu as follows:

Make: os9make -f%b%e

Forced Make: os9make -f%b%e clean all

Step 3. Select the green check mark button to save the changes.

Step 4. Click Close to exit the Properties window.

For more information about os9make and its options, refer to the Utilities
Reference manual.

Chapter 5: Using Makefiles

Getting Started with Hawk 44

Edit the Makefile File

You may find it necessary to apply options in a makefile before building the
component. In this example, you will build the debugging version of the RAM disk
driver. The makefile file is edited to apply the debug option. Complete the
following steps to set up the makefile to build the debugging version of the driver:

Step 1. Double-click the makefile in the Component window or select File -> Open from
the File menu.

Step 2. At the macro named DEBUG=, remove the comment character “#” in front of the -g
option. The -g option causes the compiler to create a ram.dbg file that provides the
symbol information map for source level debugging of device drivers.

Step 3. Right click on the makefile file and select Rebuild to do a forced make. The
debugging version of the ram driver is built and placed in the following directory:
MWOS\OS9000\<processor>\CMDS\BOOTOBJS.

Do not choose Build or Rebuild from the Project menu or from the ram_disk
component’s contextual menu. Choosing these items will cause Hawk to use
the settings from the project, which are not set correctly, in building the driver.
Instead, choose the Build or Rebuild command from the makefile contextual
menu. This will invoke os9make and use the makefile to control the build
instead of Hawk’s project settings.

45

A Application Debugging Using
SLIP/PPP

This appendix describes performing user-state debugging with Hawk over a Serial
Line Internet Protocol (SLIP) connection. Windows NT is used as the host system
and the LAN Communications SLIP device driver (spslip) is used to provide SLIP
functionality in the SoftStax environment on an OS-9 target machine. This
appendix uses the example application presented in Chapter 3, Hawk Application
Debugging.

The following sections are included in this appendix:

• Debugging over a SLIP Connection

• Debugging over a SLIP Connection using Windows 2000

Supported Configurations application debugging using SLIP/PPP:

• Clients (host machines)
• Windows 95, 98, NT, ME, 2000
• Servers (target machines)
• Microware OS-9, Microware OS-9 for 68K
• Serial Interface
• SLIP - OS-9 target support via the LAN Communications or low-level network

I/O
• PPP - OS-9 target support via the LAN Communications

Procedures may vary with your configuration. If you have questions, check
Microware Software section of the RadiSys web site for the relevant procedures
(listed below) or contact the Customer Support team at the following addresses:
support@microware.com

-or-
www.radisys.com/service_support/microware/registered/appnotes/

A password is required to access the above web address.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 46

Debugging over a SLIP Connection

Configuring the Host System

Complete the steps in the following sections to configure your host system.

Install Null Modem

The first step in configuring your host system is to install the Hawk Null Modem
for the SLIP Connection. To do this, complete the following steps.

Step 1. Click Start -> Settings -> Control Panel.

Step 2. In the Control Panel window, double click on the Modems applet.

If the Modems Properties window displays, click the Add button.

Step 3. In the Install New Modem window:

• Check the Don't detect box and then click the Next button.

• In the Manufacturers area select (Standard Modem Types).

• In the Models area select Dial-Up Networking Serial Cable between 2 PCs.
Select the Have Disk button.

• In the Install From Disk window click the Browse button.

• In the Locate File window navigate to $MWOS\DOS\BIN, where $MWOS represents
the directory on the Windows development host in which
OS-9 is installed.

If you are using an NT host, open mdmnull.nt40.inf. Otherwise, open
mdmnull.inf. Click OK.

Step 4. When you are returned to the Install New Modem window you should see the text
Hawk Null Modem SLIP Connection in the Models area. Select Next.

Step 5. Select the port onto which you want to install the Hawk Null Modem. This
example installs the Hawk Null Modem onto COM2. This allows the COM1 port
to be used as the console. Select the Next button.

Windows 2000 Users:

The procedures in this section only apply to users whose host systems run
Windows 95, 98, NT, or ME. If your host system runs Windows 2000, refer to
the section Debugging over a SLIP Connection using Windows 2000.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 47

Install RAS Device

The second step is to add the Remote Access Service (RAS) to the list of network
services. This service enables you to work offsite as though connected directly to a
network. Adding this service can be accomplished by completing the following
steps.

Step 1. Click Start -> Settings -> Control Panel.

Step 2. In the Control Panel window double click on the Network applet.

Step 3. In the Network window click the Services tab and then click the Add button.

Step 4. In the Select Network Service window select Remote Access Service from the list of
network services. Click the Have Disk button.

Step 5. After you have inserted the appropriate Microsoft CD-ROM, click the OK button in
the Insert Disk window.

Step 6. In the Add RAS Device window, select Hawk Null Modem and click OK. Be sure to
install the RAS device onto the same port that you installed the HAWK modem in 1.

Dial-Up Networking

The third step is to create a Phonebook entry and to start the Dial-Up Networking.
To do this, complete the following steps:

Step 1. Click Start -> Programs -> Accessories -> Dial-Up Networking.

Step 2. In the Dial-Up Networking window, click the New button to start the New
Phonebook Entry Wizard.

1. Fill in the Name the new phonebook entry text field. Click Next.

2. For a SLIP connection, none of the three server options apply; therefore, do not
check any of the option check boxes. Click the Next button.

3. Enter any phone number in the Phone Number text field (this is a required field).
Click the Next button.

Step 3. In the Dial-Up Networking window, click the More button and select Edit entry
and modem properties option.

Step 4. In the Edit Phonebook Entry window:

• Click the Basic tab. Ensure the Dial using field has Hawk Null Modem selected.
Click the Configure button. Ensure the Initial Speed (bps) has the correct
modem speed (19200).

• Click the Server tab.

• Make sure the Dial-up server type has SLIP Internet selected.

• Make sure the TCP/IP check box is checked.

• Click the TCP/IP Settings button.

• In the SLIP TCP/IP Settings window enter an appropriate SLIP IP address. For
example, 192.168.1.1

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 48

• Click the Script tab. Ensure the After dialing (login) has chosen None.

• Click the Security tab. Ensure the Accept any authentication option is
chosen.

• Click the X25 tab. Ensure there is no X25 network chosen.

Step 5. In the Dial-Up Networking window, select the Dial button. In the Connect to
window, click the OK button.

Debugging over a SLIP Connection using Windows 2000
Windows 2000 contains an option that is designed to allow you to change SLIP
MTU and IP header compression parameters. However, this option does not work
due to a bug in Windows 2000 (one that is not corrected in Service Packs 1 and 2).
To properly connect over SLIP between Windows 2000 and OS-9, you must
perform the procedures described in the following sections.

Stage One: Configuring the Target

Configure your target as described in the following steps:

Step 1. Open the spf_desc.h file in the following location:

/MWOS/OS9000/<processor>/PORTS/PROTOCOLS/SPF/SLIP/DEFS

Step 2. From this file, edit the line:

#define SLIPMTU 1006 /* IP level MTU */

to:

#define SLIPMTU 1500 /* IP level MTU */

#define COMPRESS_FLAG 0 /* compression off */

Step 3. Save and close the header file. Navigate up one directory to SLIP and execute
os9make to rebuild the SLIP descriptors.

You only need to start the Dial-Up Networking Monitor once per login session.
Windows NT takes approximately one to two minutes to complete the
connection.

Refer to Chapter 3, Hawk Application Debugging for the generic application
debugging procedures. Make sure the Dial-Up Networking Monitor is running
and connected. It should appear in the Windows taskbar tool tray.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 49

Step 4. Open the Configuration Wizard and enable SLIP support in your boot as follows:

1. From the Configuration Wizard main menu, select Configure -> Bootfile ->
Network Configuration. Select the Interface Configuration tab.

2. Select the SLIP Connection box on the left side of the dialog to expand the SLIP
Connection tree. Under this tree, select the Use SLIP Connection box.

3. In the SLIP Configuration area, enter the appropriate source and destination
addresses.

4. Select the Commit Change button and click OK to exit the dialog.

Step 5. Optional: If you are building a coreboot image in addition to a bootfile image, you
may want to perform the following task:

• Under the Define ROM Ports tab of the Coreboot -> Main Configuration
dialog, select the applicable radio button (located in the Define Communication
Port area). Select a baud rate of 19200 from the drop-down menu.

The baud rate for the communication port can also be set with the following
command: xmode /t<n> baud=19200, where /t<n> is the serial port descriptor.

Stage Two: Configuring the Host System

Once you have configured your target system, you complete the procedures below.

Install the Hawk Null Modem

The first step in configuring your host system is to install the Hawk Null Modem
for the SLIP Connection:

Step 1. From the Start menu on your Windows desktop, select Settings -> Control Panel.
In the Control Panel window, select Phone and Modem Options.

Step 2. From the Phone And Modem Options dialog, select the Modems tab. Click the Add
button to display the Add/Remove Hardware Wizard dialog (shown in Figure 5-4).

Figure 5-4. Phone and Modem Options Dialog

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 50

Step 3. In this dialog, check the Don’t detect my modem box and click Next.

Step 4. A window displays (shown in Figure 5-5), allowing you to select from the following
menus: Manufacturers and Models.

Figure 5-5. Manufacturers and Models Window

• From the Manufacturers list, select (Standard Modem Types).

• From the Models list, select Communications cable between two computers.

Step 5. Select the Have Disk button. The Install From Disk window appears. From here,
navigate to <DIR>/MWOS/DOS/BIN and select the file mdmnull.nt40.inf. Click Open.

Step 6. Select OK to exit the Install From Disk window. You should now see the text Hawk
Null Modem SLIP Connection under the Models list. Click Next to proceed.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 51

Step 7. A dialog displays that allows you to select the port onto which you want to install
the modem. (This dialog is shown in Figure 5-6.) Make sure the Selected ports radio
button is enabled and select an appropriate port from the list. Click Next to
proceed.

Figure 5-6. Select Port Window

Step 8. The Digital Signature Not Found dialog appears, stating that the software you
selected to install does not contain a Microsoft digital signature, and asking if you
would like to proceed with the installation. Click Yes. Windows begins the modem
installation. This may take a few minutes. When the installation is complete, select
the Finish button. This will return you to the Modems tab of the Phone and
Modem Options dialog.

Step 9. From the Modems tab, highlight the Hawk Null Modem SLIP Connection, then select
the Properties button.

Step 10. The Properties dialog appears. In the General tab, change the Max Port Speed to
19200. Click OK.

Step 11. Click OK to close the Phone and Modem Options window.

The example in this dialog installs the Hawk Null Modem onto
COM2, which allows the COM1 port to be used as the console.

This is a Null Modem connection; querying the modem does not
work.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 52

Dial-Up Networking Setup

The second step for configuring your host system is to create a dial-up connection.
To do this, complete the following tasks:

Step 1. From the Start menu on the Windows desktop, select Settings -> Control Panel.
Open Network and Dial-up Connections window.

Step 2. From here, double-click to open the Make a New Connection item. The Network
Connection Wizard appears. Click the Next button to proceed.

Step 3. Select the Dial-up to private network radio button. Click Next.

Step 4. Enter an appropriate phone number in the Phone Number text field. (This is a
required field.) Click the Next button.

Step 5. Select the For all users or Only for myself radio button, as approrpiate, then
click Next.

Step 6. In the next dialog, type the name of your connection in the applicable field and
select Finish.

Step 7. The Connect <Connection Name> window should appear. If it does not, go back to
Network and Dial-up Connections window, right-click on your connection and
select Properties from the pull-down menu.

Step 8. The Properties dialog appears. On the General tab, select the Configure button and
select 19200 from the Maximum speed drop-down menu. Click OK.

Step 9. Select the Networking tab. From the Type of dial-up server menu, select SLIP: UNIX
Connection.

Step 10. From the same tab, select Internet Protocol (TCP/IP) from the Components list.
Select the Properties button. The Internet Protocol Properties dialog appears.
Select the Use the following IP address radio button, then enter an appropriate
SLIP IP address (example: 10.0.0.2). Click OK.

Step 11. Click OK to close the Properties window, then click Cancel to close the Connect
<Connection Name> window.

Dial-Up Connection

The third step for configuring your host system is to perform the dialo-up
connection. To do this, complete the following tasks:

Step 1. Connect a serial cable between the communications port on your target machine
(the one you configured for SLIP) and the port on the host system (the one that
contains the Hawk Null Modem).

The target side fo the serial cable must have an R39F connector, and the host side of
the cable must have a null modem connector.

Step 2. Apply power to the target machine.

Step 3. From the Start menu on the Windows desktop, navigate to Settings -> Control
Panel -> Network and Dial-up Connections.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 53

Step 4. Open the Dial-up connection you created in the Dial-Up Networking section.

Step 5. Select the Dial button.

Step 6. From the console, type echo x >/t<n> at the target prompt, where /t<n> is the
descriptor of the serial port on which the target is establishing a SLIP connection.
This allows Windows 2000 to complete the dialing process and connect to the
target over SLIP.

Refer to Chapter 3, Hawk Application Debugging for the generic
application debugging procedures.

Appendix A: Application Debugging Using SLIP/PPP

Getting Started with Hawk 54

55

B Subroutine Debugging
Library

This appendix explains how Hawk can be used to debug user-state code located
external to an application process, such as in a subroutine library.

The following information assumes that the appropriate underlying networking
is in place. For subroutine library debugging, the underlying network includes
SoftStax TCP/IP (SLIP, PPP or Ethernet).

If you are using a subroutine module that is built using a makefile, review
Step 3 and apply these procedures to the source and build system for the
module. Be sure to update the makefile for source level debugging and then
rebuild the component as described.

Appendix B: Subroutine Debugging Library

Getting Started with Hawk 56

Debugging a Subroutine Library
To debug a subroutine library, complete the following steps:

Step 1. Load the updated subroutine module into memory on the OS-9 target. If an older
version already exists in memory be sure to take the appropriate action to ensure
that the updated module is properly loaded. (Either remove the older version from
memory first or make sure the new version has a higher revision.)

Step 2. Set up thse proper Source and Object Code search folders for the subroutine module
in Hawk.

From here you have two ways in which to proceed:

• If you have access to the application code that uses the subroutine module, use
Hawk to debug this application, proceed directly to Step 4.

• If you do not have access to the application code that uses the subroutine
module, proceed to Step 3.

Step 3. If you do not have access to the application code that uses the subroutine module
(in the case of maui_inp), run the application from the mshell prompt, attach to the
application process using Hawk by specifying the process ID, and if necessary run
any other process(es) necessary that will trigger/wakeup the application. (In the case
of maui_inp, run inp with the necessary parameters.)

Step 4. Once you are in the Hawk Debugger context, attach to the subroutine module by
specifying the module name. You should now be able to set breakpoints as desired
in the subroutine module.

Information on installing and executing subroutine libraries can be found in the
OS-9 Technical Manual.

	Getting Started with Hawk™
	Contents
	Introduction to Hawk™ Chapter 1
	Hawk Tools Overview
	Project Manager
	Project Spaces
	Workspaces

	Editor
	Debugger
	Debugging in User- and System-State

	Profiler
	Ultra C/C++ Compiler

	Creating Hawk Projects Chapter 2
	The Example Applications
	Create and Modify a Hawk Project
	Create a Project Space and Project
	Creating a New Component for your Project
	More on Units
	Configure the Hawk Project
	Search Paths
	Execution Search Path
	Source Options

	Build the Module
	Add a Dependency
	Adding the Sender Component

	Hawk Application Debugging Chapter 3
	Preparing to do Application Debugging
	Configuring Debug Support for your Project
	Increasing the Timeouts

	Application-Level Debugging Using Hawk
	Setting Up the Debugger
	Using the Debugger

	Hawk System-State Debugging Chapter 4
	Create the Driver Project
	Add the Driver Components to the Project
	Configure the Driver Makefiles
	Edit the makefile File
	Prepare the Target for Debugging
	Prepare Hawk for Debugging
	Attach to the System
	Attach to the Module

	Using Makefiles Chapter 5
	Overview
	OS-9 Makefiles

	Running Makefiles in Hawk
	Makefile Example
	Creating the Project
	Add Driver Components to the Project
	Configure the Driver Makefiles
	Edit the Makefile File

	Application Debugging Using SLIP/PPP Appendix A
	Debugging over a SLIP Connection
	Configuring the Host System
	Install Null Modem
	Install RAS Device
	Dial-Up Networking

	Debugging over a SLIP Connection using Windows 2000
	Stage One: Configuring the Target
	Stage Two: Configuring the Host System
	Install the Hawk Null Modem
	Dial-Up Networking Setup
	Dial-Up Connection

	Subroutine Debugging Library Appendix B
	Debugging a Subroutine Library

